如图,在扇形 中, , 平分 交 于点 ,点 为半径 上一动点.若 ,则阴影部分周长的最小值为 .
如图, 的半径是2,扇形 的圆心角为 .若将扇形 剪下围成一个圆锥,则此圆锥的底面圆的半径为 .
如图,在每个小正方形的边长为1的网格中, 的顶点 , 均落在格点上,点 在网格线上,且 .
(Ⅰ)线段 的长等于 .
(Ⅱ)以 为直径的半圆与边 相交于点 ,若 , 分别为边 , 上的动点,当 取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点 , ,并简要说明点 , 的位置是如何找到的(不要求证明) .
如图,在边长为2的正方形 中,对角线 的中点为 ,分别以点 , 为圆心,以 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为 .(结果保留
如图,边长为 的正六边形螺帽,中心为点 , 垂直平分边 ,垂足为 , ,用扳手拧动螺帽旋转 ,则点 在该过程中所经过的路径长为 .
在矩形 中, , ,点 在对角线 上,圆 的半径为2,如果圆 与矩形 的各边都没有公共点,那么线段 长的取值范围是 .
我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深 寸,锯道长 尺 尺 寸).问这根圆形木材的直径是 寸.