如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为( )
A.π | B.6π | C.3π | D.1.5π |
如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于( )
A.120° | B.140° | C.150° | D.160° |
为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址( )
A.仅有一处 | B.有四处 | C.有七处 | D.有无数处 |
如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处.已知AB=8,BC=10,则tan∠EFC的值为 ( )
A. | B. | C. | D. |
如图,四边形ABCD、DEFG都是正方形,连接AE、CG、AE与CG相交于点M,CG与AD相交于点N.
求证:(1);
(2)
我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线, AF⊥BE , 垂足为P.像△ABC这样的三角形均为“中垂三角形”.设,,.
特例探索
(1)如图1,当∠=45°,时,= , ;
如图2,当∠=30°,时, = , ;
归纳证明
(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;
拓展应用
(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG, AD= ,AB=3.求AF的长.
如图,在矩形ABCD中,对角线与相交于点O,且AB=OA=2cm ,则BD的长为________cm,BC的长为_______cm.
如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2014A2015= .