等腰三角形 在平面直角坐标系中的位置如图所示,已知点 ,点 在原点, ,把等腰三角形 沿 轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置② 依此规律,第15次翻转后点 的横坐标是 .
如图,若 内一点 满足 ,则称点 为 的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知 中, , , 为 的布罗卡尔点,若 ,则 .
为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星 , , , , 是正五角星的五个顶点),则图中 的度数是 度.
如图,在矩形 中, , ,点 从点 出发,以每秒2个单位长度的速度沿 向点 运动,同时点 从点 出发,以每秒1个单位长度的速度沿 向点 运动,当点 到达点 时,点 , 同时停止运动.连接 , ,设点 运动的时间为 ,若 是以 为底的等腰三角形,则 的值为 .
如图,等腰 的底边 ,面积为120,点 在边 上,且 , 是腰 的垂直平分线,若点 在 上运动,则 周长的最小值为 .
如图,在 中, , .分别以点 , 为圆心,大于 的长为半径画弧,两弧交于 , 两点,直线 交 于点 ,连接 .以点 为圆心, 为半径画弧,交 延长线于点 ,连接 .若 ,则 的周长为 .