如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF ②△ABE∽△ACD,③BE+DC>DE④BE2+DC2=DE2,其中正确的有( )个
A.1 B.2 C.3 D.4
如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图像上,已知点B的坐标是(,),则k的值为( )
A.10 | B.8 | C.6 | D.4 |
如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:
①△BO′A可以由△BOC绕点B逆时针旋转60°得到;
②点O与O′的距离为4;
③∠AOB=150°;
④四边形AO BO′的面积为;
⑤.
其中正确的结论是( )
A.①②③ | B.①②③④ | C.①②③⑤ | D.①②③④⑤ |
有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等.其中能判断两直角三角形全等的是( )
A.① | B.② | C.③ | D.①② |
如图为八个全等的正六边形(六条边相等,六个角相等)紧密排列在同一平面上的情形.根据图中标示的各点位置,下列三角形中与△ACD全等的是( )
A.△ACF | B.△AED | C.△ABC | D.△BCF |
如图,已知AB=AC,∠A=36°,AB的中垂线MD交AC于点D,交AB于点M.下列结论:①BD是∠ABC的平分线;②△BCD是等腰三角形;③DC+BC=AB,正确的有( )
A.3个 | B.2个 | C.1个 | D.0个 |
如图,圆柱底面半径为cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为( )
A.12cm B.cm C.15cm D.cm
如图是一个等边三角形木框,甲虫在边框上爬行(,端点除外),设甲虫到另外两边的距离之和为,等边三角形的高为,则与的大小关系是( )
A. | B. | C. | D.无法确定 |
两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,小明在探究筝形的性质时,得到如下结论:
①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有( )
A.①② | B.①③ | C.②③ | D.①②③ |
如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是( )
A.AD=BD B.CD=BD
C.∠A=∠BED D.∠ECD=∠EDC
如图,△ABC≌△DEF,点B、E、C、F在同一直线上,BF=7cm,EC=3cm,则BE长为( )
A.1cm B.2cm C.3cm D.4cm
如图,等腰,,,于点,点是延长线上一点,点是线段上一点,,下面结论:
①;
②是等边三角形;
③;
④.
其中正确的是( )
A.②③ | B.①②④ | C.③④ | D.①②③④ |