在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为"无字证明".实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是
A. |
统计思想 |
B. |
分类思想 |
C. |
数形结合思想 |
D. |
函数思想 |
如图, , ,点 在 上,四边形 是矩形,连接 , 交于点 ,连接 交 于点 .下列4个判断:① ;② ;③ ;④若点 是线段 的中点,则 为等腰直角三角形,其中,判断正确的是 .(填序号)
如图,三角形纸片 , , ,点 为 中点,沿过点 的直线折叠,使点 与点 重合,折痕交 于点 .已知 ,则 的长是
A. |
|
B. |
3 |
C. |
|
D. |
|
如图,在正方形 中, , 为边 上一点, 为边 上一点.连接 和 交于点 ,连接 .若 ,则 的最小值为 .
如图,在 中, ,分别以点 , 为圆心,以大于 长为半径画弧,两弧交于点 , .作直线 ,交 于点 .分别以点 , 为圆心,以大于 长为半径画弧,两弧交于点 , .作直线 ,交 于点 .连接 , .若 ,则 .
如图,在 和 中, , , .连接 ,连接 并延长交 , 于点 , .若 恰好平分 ,则下列结论错误的是
A. |
|
B. |
|
C. |
|
D. |
|
四边形 为矩形, 是 延长线上的一点.
(1)若 ,如图1,求证:四边形 为平行四边形;
(2)若 ,点 是 上的点, , 于点 ,如图2,求证: 是等腰直角三角形.
如图,将矩形纸片 折叠 ,使 落在 上, 为折痕,然后将矩形纸片展开铺在一个平面上, 点不动,将 边折起,使点 落在 上的点 处,连接 ,若 , ,则 的长为 .
如图,在平行四边形 中, 是 的中点,则下列四个结论:
① ;
②若 , ,则 ;
③若 ,则 ;
④若 ,则 与 全等.
其中正确结论的个数为
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,在 中, , ,垂足分别为点 和点 , 与 交于点 ,连接 并延长交 于点 ,若 , , ,则 值为 .