我们定义一种新函数:形如 的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数 的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为 , 和 ;②图象具有对称性,对称轴是直线 ;③当 或 时,函数值 随 值的增大而增大;④当 或 时,函数的最小值是0;⑤当 时,函数的最大值是4.其中正确结论的个数是 .
直线 y= kx+ b与抛物线 交于 A( x 1, y 1)、 B( x 2, y 2)两点,当 OA⊥ OB时,直线 AB恒过一个定点,该定点坐标为 .
如图,抛物线 为常数)交 轴于点 ,与 轴的一个交点在2和3之间,顶点为 .
①抛物线 与直线 有且只有一个交点;
②若点 、点 , 、点 在该函数图象上,则 ;
③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为 ;
④点 关于直线 的对称点为 ,点 、 分别在 轴和 轴上,当 时,四边形 周长的最小值为 .
其中正确判断的序号是 .