初中数学

抛物线y=+6x+m与x轴只有一个公共点,则m的值为_________.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

x1x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1x2和系数abc有如下关系:x1+x2=-x1x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+ca≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1-x2|=
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.

(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知二次函数y=ax2+bx+ca≠0)的图象如图所示,下列4个结论:

abc<0;②ba+c;③4a+2b+c>0;④b2﹣4ac>0
其中正确结论的有(  )

A.①②③ B.①②④ C.①③④ D.②③④
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

请阅读下列材料:若是关于的一元二次方程的两个根,则方程的两个根和系数有如下关系:. 我们把它们称为根与系数关系定理.
如果设二次函数的图象与x轴的两个交点.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:

请你参考以上定理和结论,解答下列问题:
设二次函数的图象与x轴的两个交点为,抛物线的顶点为,显然为等腰三角形。
(1)当为等腰直角三角形时,求的值,
(2)当为等边三角形时,求的值,
(3)设抛物线轴的两个交点为,顶点为,且,试问如何平移此抛物线,才能使

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年贵州省贵阳市)如图,经过点C(0,﹣4)的抛物线)与x轴相交于A(﹣2,0),B两点.

(1)a      0,      0(填“>”或“<”);
(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年青海省中考)如图,二次函数的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.该抛物线的顶点为M.

(1)求该抛物线的解析式;
(2)判断△BCM的形状,并说明理由;
(3)探究坐标轴上是否存在点P,使得以点P、A、C为顶点的三角形与△BCM相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年新疆乌鲁木齐市)抛物线与x轴交于A,B两点(OA<OB),与y轴交于点C.

(1)求点A,B,C的坐标;
(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).
①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,的值最小,求出这个最小值并写出此时点E,P的坐标;
②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年贵州省黔南州)二次函数的图象如图所示,下列说法中错误的是(   )

A.函数图象与y轴的交点坐标是(0,﹣3)
B.顶点坐标是(1,﹣3)
C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)
D.当x<0时,y随x的增大而减小
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学抛物线与x轴的交点试题