初中数学

在平面直角坐标系中,设二次函数 y 1 = x 2 + bx + a y 2 = a x 2 + bx + 1 ( a b 是实数, a 0 )

(1)若函数 y 1 的对称轴为直线 x = 3 ,且函数 y 1 的图象经过点 ( a , b ) ,求函数 y 1 的表达式.

(2)若函数 y 1 的图象经过点 ( r , 0 ) ,其中 r 0 ,求证:函数 y 2 的图象经过点 ( 1 r 0 )

(3)设函数 y 1 和函数 y 2 的最小值分别为 m n ,若 m + n = 0 ,求 m n 的值.

来源:2020年浙江省杭州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知二次函数图象的顶点坐标为,该二次函数图象的对称轴与轴的交点为是这个二次函数图象上的点,是原点.

(1)不等式是否成立?请说明理由;

(2)设的面积,求满足的所有点的坐标.

来源:2017年云南省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

x1x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1x2和系数abc有如下关系:x1+x2=-x1x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+ca≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1-x2|=
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.

(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于点 A ( 2 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C

(1)求抛物线的表达式;

(2)作射线 AC ,将射线 AC 绕点 A 顺时针旋转 90 ° 交抛物线于另一点 D ,在射线 AD 上是否存在一点 H ,使 ΔCHB 的周长最小.若存在,求出点 H 的坐标;若不存在,请说明理由;

(3)在(2)的条件下,点 Q 为抛物线的顶点,点 P 为射线 AD 上的一个动点,且点 P 的横坐标为 t ,过点 P x 轴的垂线 l ,垂足为 E ,点 P 从点 A 出发沿 AD 方向运动,直线 l 随之运动,当 2 < t < 1 时,直线 l 将四边形 ABCQ 分割成左右两部分,设在直线 l 左侧部分的面积为 S ,求 S 关于 t 的函数表达式.

来源:2019年广西桂林市中考数学试卷
  • 更新:2021-04-28
  • 题型:未知
  • 难度:未知

初中数学二次函数图象与系数的关系解答题