有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数 与 的图象性质.
小明根据学习函数的经验,对函数 与 ,当 时的图象性质进行了探究.
下面是小明的探究过程:
(1)如图所示,设函数 与 图象的交点为 , ,已知 点的坐标为 ,则 点的坐标为 ;
(2)若点 为第一象限内双曲线上不同于点 的任意一点.
①设直线 交 轴于点 ,直线 交 轴于点 .求证: .
证明过程如下:设 ,直线 的解析式为 .
则 ,
解得
直线 的解析式为
请你把上面的解答过程补充完整,并完成剩余的证明.
②当 点坐标为 , 时,判断 的形状,并用 表示出 的面积.
如图,矩形 的两边 、 的长分别为3、8, 是 的中点,反比例函数 的图象经过点 ,与 交于点 .
(1)若点 坐标为 ,求 的值及图象经过 、 两点的一次函数的表达式;
(2)若 ,求反比例函数的表达式.
甲、乙两车分别从、两地同时出发,甲车匀速前往地,到达地立即以另一速度按原路匀速返回到地;乙车匀速前往地,设甲、乙两车距地的路程为(千米),甲车行驶的时间为(时,与之间的函数图象如图所示.
(1)求甲车从地到达地的行驶时间;
(2)求甲车返回时与之间的函数关系式,并写出自变量的取值范围;
(3)求乙车到达地时甲车距地的路程.