如图,在矩形 ABCD 中, AB = 3 cm , AD = 3 cm .动点 P 从点 A 出发沿折线 AB - BC 向终点 C 运动,在边 AB 上以 1 cm / s 的速度运动;在边 BC 上以 3 cm / s 的速度运动,过点 P 作线段 PQ 与射线 DC 相交于点 Q ,且 ∠ PQD = 60 ° ,连接 PD , BD .设点 P 的运动时间为 x ( s ) , ΔDPQ 与 ΔDBC 重合部分图形的面积为 y ( c m 2 ) .
(1)当点 P 与点 A 重合时,直接写出 DQ 的长;
(2)当点 P 在边 BC 上运动时,直接写出 BP 的长(用含 x 的代数式表示);
(3)求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围.