在直角坐标系中,设函数 y = a x 2 + bx + 1 ( a , b 是常数, a ≠ 0 ) .
(1)若该函数的图象经过 ( 1 , 0 ) 和 ( 2 , 1 ) 两点,求函数的表达式,并写出函数图象的顶点坐标;
(2)写出一组 a , b 的值,使函数 y = a x 2 + bx + 1 的图象与 x 轴有两个不同的交点,并说明理由.
(3)已知 a = b = 1 ,当 x = p , q ( p , q 是实数, p ≠ q ) 时,该函数对应的函数值分别为 P , Q .若 p + q = 2 ,求证: P + Q > 6 .
先阅读理解下面的例题,再按要求解答下列问题: 例题 :求代数式的最小值. 解: 的最小值是. (1)代数式的最小值 ; (2)求代数式的最小值; (3)某居民小区要在一块一边靠墙(墙长)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为的栅栏围成.如图,设(),请问:当取何值时,花园的面积最大?最大面积是多少?