某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.
(1)若黄老师家5月份用水16吨,问应交水费多少元?
(2)若黄老师家7月用水a吨,问应交水费多少元?(用a的代数式表示)
某市区自2014年1月起,居民生活用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):
月用水量(吨) |
水价(元/吨) |
第一级 20吨以下(含20吨) |
1.6 |
第二级 20吨﹣30吨(含30吨) |
2.4 |
第三级 30吨以上 |
3.2 |
例:某用户的月用水量为32吨,按三级计量应缴水费为:
1.6×20+2.4×10+3.2×2=62.4(元)
(1)如果甲用户的月用水量为12吨,则甲需缴的水费为 元;
(2)如果乙用户缴的水费为39.2元,则乙月用水量 吨;
(3)如果丙用户的月用水量为a吨,则丙用户该月应缴水费多少元?(用含a的代数式表示,并化简)
为了做一个试管架,在长为a(cm)(a﹥6)的木板上钻3个小孔(如图),每个小孔的直径为2cm,则x等于( ).
A. | B. |
C. | D. |
今年弟弟10岁,姐姐12岁,经过t年后,姐弟年龄之和为( ).
A.(12+t)岁 | B.(11+t)岁 | C.(22+2t)岁 | D.(22+t)岁 |
如图,每个图案都由若干个棋子摆成,依照此规律,第n个图案中棋子的总个数可以用含n的代数式表示为 .
某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”
期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.
方案一:买一套西装送一条领带;
方案二:西装和领带都按定价的90%付款.
现某客户要到该商场购买西装20套,领带x条(x>20).
(1)若该客户按方案一购买,需付款 元.(用含x的代数式表示)
若该客户按方案二购买,需付款 元.(用含x的代数式表示)
(2)若x=30,通过计算说明此时按(1)哪种方案购买较为合算?
(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.
如图,长方形的长为,宽为,
(1)用含、的代数式表示右图阴影部分的面积S阴影.
(2)当a=5,b=2时,求S阴影.(取3.14)
一个矩形的周长为30,若矩形的一边长用字母表示,则此矩形的面积为( )
A. | B. |
C. | D. |
如图,平面内有公共端点的6条射线O
A.O | B.O | C.O | D.OE、OF,按照图中的规律,从射线OA开始,按照逆时针方向,依次在射线上画点表示1,2,3,4,5,6,7,… |
(1)根据图中规律,表示“19”的点在射线 上;
(2)按照图中规律推算,表示“2014”的点在射线 上;
(3)请你写出在射线OC上表示的数的规律(用含的代数式表示) .
全班同学排成长方形长队,每排的同学数为a,排数比每排同学数的3倍还多2,那么全班同学数是( )
A. | B. | C. | D. |