初中数学

甲乙两长方形的周长相等,甲长方形长宽之比是3:2,乙长方形长宽之比是7:5,则两长方形面积之比是     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

电车公司维修站有7辆电车需要维修.如果用一名工人维修这7辆电车的修复时间分别为12,17,8,18,23,30,14分钟.每辆电车每停开1分钟的经济损失是11元.现在由3名工作效率相同的维修工人各自单独工作,要使经济损失减到最小程度,那么最小的损失是多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

“鸡兔同笼”是我国古代名题之一,《孙子算经》是这样记载的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,你认为结果是( )

A.鸡23只兔12只 B.鸡12只兔23只
C.鸡14只兔21只 D.以上都不对
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

100增加20%后,再减少20%,所得的数与原数相等.    

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某校有55个同学参加数学竞赛,已知若将参赛人任意分成四组,则必然有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人数为          人。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一天24小时中分针与时针垂直共有        次。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一条单线铁路线上有A,B,C,D,E五个车站,它们之间的路程如下图所示(单位:千米).两列火车从A,E相向对开,A车先开了3分钟,每小时行60千米,E车每小时行50千米,两车在车站上才能停车,互相让道、错车.两车应该安排在哪一个车站会车(相遇),才能使停车等候的时间最短,先到的火车至少要停车多长时间?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

上学的路上,小明听到两个人在谈论各自的年龄,只听一人说“当我的年龄是你现在的年龄时,你才4岁.”另一人说“当我的年龄是你现在的年龄时,你将61岁,”他们两人中,年龄较小的现在(  )岁.

A.21 B.22 C.23 D.24
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

Δ○□○Δ○□○Δ○□○…左起第30个是_____.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:

(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E.

(1)判断DF与⊙O的位置关系,并证明你的结论;
(2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:

(1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°;
(2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°;
(3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;
已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(取1.732,结果保留整数)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知,在矩形ABCD中,E为BC边上一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图①,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图②,△GMN从图①的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,△GMN和点P同时停止运动.设运动时间为t秒,解答下列问题:

(1)在整个运动过程中,当点G在线段AE上时,求t的值.
(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形.若存在,求出t的值;若不存在,说明理由.
(3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线,点坐标为(1,0),过点轴的垂线交直线于点,以原点为圆心,长为半径画弧交轴于点;再过点轴的垂线交直线于点 ,以原点为圆心,长为半径画弧交轴于点,…,按此做法进行下去,点 的坐标为        

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题14分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.

(1)填空:点A坐标为 ;抛物线的解析式为            
(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学试题