金鱼是观赏价值很高的鱼类,利用体积较大的卵细胞培育二倍体金鱼是目前育种的重要技术,其关键步骤包括:①精子染色体的失活处理(失活后的精子可激活卵母细胞完成减数分裂形成卵细胞);②诱导卵细胞染色体二倍体化处理等。具体操作步骤如下图所示,请据图回答下列问题。
(1)经辐射处理可导致精子染色体断裂失活,这属于_______________变异。
(2)卵细胞的二倍体化有两种方法:用方法一获得的子代是纯合二倍体,导致染色体数目加倍的原因是______________;用方法二获得的子代通常是杂合二倍体,这是因为___________发生了交叉互换造成的。
(3)用上述方法繁殖鱼类并统计子代性别比例,可判断其性别决定机制。若子代性别为__________,则其性别决定为XY型;若子代性别为__________,则其性别决定为ZW型(WW或YY个体不能成活)。
(4)已知金鱼的正常眼(A)对龙眼(a)为显性,另一对同源染色体上的等位基因B、b将影响基因a的表达,当基因b纯合时,基因a不能表达。偶然发现一只具有观赏价值的龙眼雌鱼,若用卵细胞二倍体化的方法进行大量繁殖,子代出现了正常眼雌鱼,则该龙眼雌鱼的基因型为____________;若用基因型为AABB的雄鱼与子代的正常眼雌鱼杂交,子二代出现龙眼个体的概率为_________。
(5)研究发现,金鱼的双尾鳍(D)对单尾鳍(d)为显性,在一个自由交配的种群中,双尾鳍的个体占36%。现有一对双尾鳍金鱼杂交,它们产生单尾鳍后代的概率是_________。如果它们的子代中有15只单尾鳍金鱼,从理论上讲,这对金鱼所生子代个体总数约为_________。
分析与遗传有关的实验,回答相关的问题:
(1)孟德尔在做豌豆杂交实验时,采用纯种高茎和矮茎豌豆分别做了_______实验,结果F1 都表现为高茎,F1 自交得F2,F2出现3:1 性状分离比的根本原因是______________。
(2)“彩棉”是我国著名育种专家采用“化学诱变”、“物理诱变”和“远缘杂交”三结合育种技术培育而成的。据专家介绍,其中“物理诱变”采用的是一种单一射线,若种子进入太空后,经受的是综合射线,甚至是人类未知的射线辐射。在这种状态下,可以给种子创造物理诱变的机率,从产生的二代种子中可以选择无数的育种材料,丰富育种基因资源,从而可能创造出更优质的棉花新品种,据此回答:
①“彩棉”育种中经综合射线诱变后,引发的变异是 。
②“彩棉”返回地面后,是否均可产生有益的变异? 。其原因是 。
(3)分析如图所示的家系图,此种遗传病的遗传涉及非同源染色体上的两对等位基因。已知Ⅰ-1基因型为AaBB,且II-2与II-3婚配的子代都不会患病。 若Ⅲ–2与基因型为AaBb的女性婚配,若生育一表现正常的女儿概率为_______。
Ⅰ.簇毛麦(二倍体)具有许多普通小麦(六倍体)不具有的优良基因,如抗白粉病基因。为了改良小麦品种,育种工作者将簇毛麦与普通小麦杂交,过程如下:
(1)杂交产生的F1代是________倍体植株,其染色体组的组成为________。F1代在产生配子时,来自簇毛麦和普通小麦的染色体几乎无法配对,说明它们之间存在________。
(2)为了使F1代产生可育的配子,可用________对F1代的幼苗进行诱导处理。为鉴定该处理措施的效果,可取其芽尖制成临时装片,在________倍显微镜下观察________期细胞,并与未处理的F1进行染色体比较。
(3)对可育植株进行辐射等处理后,发现来自簇毛麦1条染色体上的抗白粉病基因(e)移到了普通小麦的染色体上,这种变异类型属于________。在减数分裂过程中,该基因与另一个抗白粉病基因________(不/一定/不一定)发生分离,最终可形成________种配子,其中含有抗白粉病基因(e)配子的基因组成是________。
Ⅱ.绿色荧光蛋白基因(GFP)被发现以来,一直作为一个监测完整细胞和组织内基因表达及蛋白质位置的理想标记。请根据图表回答下列问题。
(1)已知GFP是从水母的体细胞中提取出的一种基因,提取它时通常利用的酶是 。
(2)若GFP的一端伸出的核苷酸的碱基序列是—TCGA—,另一端伸出的核苷酸的碱基序列是—TGCA—,则在构建含该GFP的重组质粒时,应选用的限制酶是__________(请在右表中选择)。
(3)若将含GFP的重组质粒导入猪胎儿成纤维细胞,则常用的方法是__________。检测GFP是否已重组到猪胎儿成纤维细胞的染色体DNA上,可采用__________技术进行检测。
(4)欲进一步将已导入了重组质粒的猪胎儿成纤维细胞培养成带有绿色荧光蛋白质的转基因猪,还需利用 技术,将导入了重组质粒的猪胎儿成纤维细胞的细胞核移植到去核的猪的卵母细胞中,从而形成重组细胞,再进一步培养成旱期胚胎,通过 技术转移到猪的子宫中,从而得到绿色荧光蛋白转基因克隆猪。
(5)为了加快繁殖速度,可对(4)中的早期胚胎进行 。也可将得到的绿色荧光蛋白转基因克隆猪(雌性),用__________处理,使之超数排卵,提高其繁育能力。
请回答下列有关遗传问题:
(1)研究发现,某果蝇中,与正常酶1比较,失去活性的酶1氨基酸序列有两个突变位点,如下图:
注:字母代表氨基酸,数字表示氨基酸位置,箭头表示突变的位点
据图推测,酶1氨基酸序列a、b两处的突变都是控制酶1合成的基因发生突变的结果,其中a处是发生碱基对的 导致的,b处是发生碱基对的 导致的。进一步研究发现,失活酶1的相对分子质量明显小于正常酶1,出现此现象的原因可能是基因突变导致翻译过程 。
(2)果蝇的眼色遗传中,要产生色素必须含有位于常染色体上的基因 A,且位于X染色体上的基因B和b分别会使眼色呈紫色和红色(紫色对红色为显性)。果蝇不能产生色素时眼色为白色。现将纯合白眼雄果蝇和纯合红眼雌果蝇杂交,后代中有紫色个体。请回答下列问题:
①F1中雌果蝇的基因型为______ __ ,F1中雄果蝇的表现型为________。让F1 雌雄个体相互交配得到F2,F2中紫眼∶红眼∶ 白眼比例为________ 。F2代中红眼个体的基因型有 种。
②请设计合理的实验方案,从亲本或 F1中选用个体以探究 F2中白眼雌蝇的基因型:
第一步:让白眼雌蝇与基因型为________ 的雄蝇交配;第二步:观察并统计后代的表现型。预期结果和结论之一是如果子代_______ ,则F2中白眼雌蝇的基因 型为aaXBXb;
(3)玉米籽粒黄色基因T与白色基因t是位于9号染色体上的一对等位基因,已知无正常9号染色体的花粉不能参与受精作用。现有基因型为Ttt的黄色籽粒植株B,其细胞中9号染色体如图二。
若植株B在减数第一次分裂过程中3条9号染色体会随机的移向细胞两极并最终形成含1条和2条9号染色体的配子,那么以植株B为父本进行测交,后代的表现型及比例为 ______ _ ,其中得到的染色体异常植株占的比例为:____ ___。
如图甲是基因型为AaBB的生物细胞分裂示意图,图乙表示由于DNA中碱基改变导致蛋白质中的氨基酸发生改变的过程,图丙为部分氨基酸的密码子表。据图回答:
(1)据图甲推测,此种细胞分裂过程中,出现的变异方式可能是_____________________。
(2)在真核生物细胞中图甲中Ⅱ过程发生的场所是____________________。
(3)图丙是几种氨基酸的密码子。如果图乙的碱基改变为碱基对替换,则X是图丙氨基酸中 的可能性最小。图乙所示变异,除由碱基对替换外,还可由碱基对________________导致。
(4)A与a基因的根本区别在于基因中_________________不同。
(遗传图解6分,其余每空2分,共16分)家蚕为ZW型性别决定的二倍体生物,A(普通斑)对a(素斑)为显性。在Aa蚕卵孵化过程中,用X射线处理,在雌蚕幼体中发现有少数个体表现为素斑、或为普通斑与素斑的嵌合体;另有少数普通斑雌蚕成熟后,其测交子代斑纹表现为伴性遗传。对这些变异类型进行研究,发现细胞中基因及染色体的变化如图所示(其他基因及染色体均正常)。请回答:
(1)若嵌合体幼蚕的部分细胞为突变I,则其是在细胞进行___________过程中发生了变异所致。
(2)突变II的变异类型为染色体结构变异中的______________。
(3)请在答题纸的指定位置上写出突变II测交的遗传图解。
(4)野生型雌家蚕(ZBW)经诱变处理后出现了一只突变型(Z×W)雌家蚕,该突变可能是隐性突变、隐性致死突变(胚胎期致死)或无效突变(仍保持原有性状)。现将经诱变处理的雌家蚕与野生型雄性家蚕进行两代杂交实验,观察F2性状分离情况,请预期实验结果:
①若F2中____________________________________________,则说明发生了隐性突变;
②若F2中____________________________________________,则说明发生了隐性致死突变;
③若F2中____________________________________________,则说明发生了无效突变。
(13 分)金丝雀鸟的性别决定为ZW型,ZZ为雄性,ZW为雌性。 请回答下列有关其眼色遗传的问题:
(l)有人从黑眼金丝雀中发现一只红眼雌性,用该金丝雀与一只黑眼雄性杂交得F1,F1随机交配
得F2,子代表现型及比例如下(基因用B、b 表示):
①显性性状是 眼,亲本红眼金丝雀的基因型是 。
②让F2代雄性与红眼雌性随机交配。 所得F3代中,雌蝇有 种基因型,雄性中红眼金丝雀所占比例为 。
(2)在多次杂交实验中,又发现一只褐色眼雄性金丝雀。研究发现,褐色眼的出现与常染色体上的基因A、a有关。将该雄性金丝雀与纯合黑眼雌性杂交得F1,F1随机交配得F2,子代表现型及比例如下:
实验二中亲本褐色眼金丝雀的基因型为 ;F2代红眼金丝雀共有 种基因型。在红眼雄性中纯合子所占的比例为 。
(3)金丝雀黑眼基因非模板链末端序列如下图,红眼基的产生是图中“↑”所指碱基发生缺失
所致,其余部分完全相同(注:终止密码子为UAA,UAG 或UGA)。
则红眼基因比黑眼基因少编码了 个氨基酸,该变异只为生物进化提供 ,而生物进化的方向由 决定。
I(16分)果蝇是研究遗传学的常用材料。
(1)现有一果蝇种群,已知基因D、d控制体色,基因G、g控制翅型,两对基因分别位于不同的常染色体上。下表为果蝇不同杂交组合及其结果。
|
亲本性状 |
表现型及比例 |
杂交组合1 |
黑身长翅X黑身长翅 |
黑身长翅:黑身残翅=3:1 |
杂交组合2 |
灰身残翅X灰身残翅 |
灰身残翅:黑身残翅=2:1 |
杂交组合3 |
灰身残翅X黑身长翅 |
灰身长翅:黑身长翅=1:1 |
①杂交组合2的F1中,灰身残翅和黑身残翅的比例为2:1,其原因最可能是_______________
②杂交组合3中亲本灰身残翅果蝇与黑身长翅果蝇基因型分别为 ;选择该组合F1中的灰身长翅雌雄果蝇彼此交配,F2中灰身长翅果蝇所占比例为 。
(2)某突变体果蝇的X染色体上存在CLB区段(用XCLB表示),B为控制棒眼的显性基因, L基因的纯合子在胚胎期死亡(XCLBXCLB与XCLBY不能存活),CLB存在时,X染色体间 非姐妹染色单体不发生交换。正常眼果蝇X染色体无CLB区段(用X+表示)。请回答下列问题:
①基因B中一条脱氧核苷酸链内相邻碱基A与T通过 _________连接(填化合物名称);基因B表达过程中,RNA聚合酶需识别并结合 才能催化形成mRNA。
②基因型为XCLBX+的果蝇可用于检测果蝇X染色体上正常眼基因是否发生隐性突变 (正常眼基因突变成隐性基因),此法称CLB测定法。此测定法分为三个过程,分别 用①②③表示。如图所示:
a、过程③产生F2中雌果蝇的表现型及比例是____。
b、若X射线处理导致P中部分X染色体上正常眼基因发生隐性突变,可根据上图F2中_____________计算隐性突变频率;但若从上图F1中选择X+X?与X+Y进行杂交,而后根据F2计算隐性突变频率则会因________________而出现误差。
Ⅱ(6分)我国科学家利用转基因技术把水母体内的荧光蛋白基因导入到猪的纤维细胞 内,培育出了可发出红、黄、绿、青4种荧光的转基因猪。这是国际上首次获得能同时表达四种荧光蛋白的转基因克隆猪。
(1)获取水母的荧光蛋白基因后还需釆用PCR技术对其进行扩增,该过程除需要模板、原料、相关的酶以外,还需加入_________。PCR技术搡作步骤中包括两次升温和一次降温,其中降温的目的是__________________________________。
(2)把水母荧光蛋白基因导入猪的纤维细胞内釆用的方法是 。对荧光蛋白进行改造,可以让猪发出特殊的荧光。对蛋白质的设计改造,最终还必须通过________来完成。
(3)科学家正试图利用转基因技术对猪的器官进行改造,培育出没有 的转基因克隆猪,以解决人体移植器官短缺的难题。转基因克隆猪的获得除利用基因工程、 细胞工程外,还需利用________________等技术。
肥胖与遗传密切相关,是影响人类健康的重要因素之一。
(1)某肥胖基因发现于一突变系肥胖小鼠,人们对该基因进行了相关研究。
①为确定其遗传方式,进行了杂交试验,根据实验结果与结论完成以下内容。
实验材料: 小鼠;杂交方法: 。
实验结果:子一代表现型均正常;结论:遗传方式为常染色体隐性遗传。
②正常小鼠能合成一种蛋白类激素,检测该激素的方法是 。小鼠肥胖是由于正常基因的编码链(模板链的互补链)部分序列“CTCCGA”中的一个C被T替换,突变为决定终止密码(UAA或UGA或UAG)的序列,导致该激素不能正常合成,突变后的序列是 ,这种突变 (填“能”或“不能”)使基因的转录终止。
③在人类肥胖症研究中发现,许多人能正常分泌该类激素却仍患肥胖症,其原因是靶细胞缺乏相应的 。
(2)目前认为,人的体重主要受多基因遗传的控制。假如一对夫妇的基因型均为AaBb(A、B基因使体重增加的作用相同且具累加效应,两对基因独立遗传),从遗传角度分析,其子女体重超过父母的概率是 ,体重低于父母的基因型为 。
(3)有学者认为,利于脂肪积累的基因由于适应早期人类食物缺乏而得以保留并遗传到现代,表明 决定生物进化的方向。在这些基因的频率未明显改变的情况下,随着营养条件改善,肥胖发生率明显增高,说明肥胖是 共同作用的结果。
为研究水稻D基因的功能,研究者将T-DNA插入到D基因中,致使该基因失活,失活后的基因记为d。现以野生植株和突变植株作为亲本进行杂交实验,统计母本植株的结实率,结果如下表所示。
杂交编号 |
亲本组合 |
结实数/授粉的小花数 |
结实率 |
① |
♀DD×♂dd |
16/158 |
10% |
② |
♀dd×♂DD |
77/154 |
50% |
③ |
♀DD×♂DD |
71/141 |
50% |
(1)表中数据表明,D基因失活使________配子育性降低。为确定配子育性降低是由于D基因失活造成的,可将________作为目的基因,与载体连接后,导入到________(填“野生”或“突变”)植株的幼芽经过________形成的愈伤组织中,最后观察转基因水稻配子育性是否得到恢复。
(2)用________观察并比较野生植株和突变植株的配子形成,发现D基因失活不影响二者的________分裂。
(3)进一步研究表明,配子育性降低是因为D基因失活直接导致配子本身受精能力下降。若让杂交①的F1给杂交②的F1授粉,预期结实率为________,所获得的F2植株的基因型及比例为________。
(4)为验证F2植株基因型及比例,研究者根据D基因、T-DNA的序列,设计了3种引物,如下图所示:
随机选取F2植株若干,提取各植株的总DNA,分别用引物“Ⅰ+Ⅲ”组合及“Ⅱ+Ⅲ”组合进行PCR,检测是否扩增(完整的T-DNA过大,不能完成PCR)。若________,则相应植株的基因型为Dd;同理可判断其他基因型,进而统计各基因型比例。
(5)研究表明D基因表达产物(D蛋白)含有WD40(氨基酸序列),而通常含有WD40的蛋白都定位在细胞核内。为探究D蛋白是否为核蛋白,研究者将D基因与黄色荧光蛋白基因融合;同时将已知的核蛋白基因与蓝色荧光蛋白基因融合。再将两种融合基因导入植物原生质体表达系统,如果________,则表明D蛋白是核蛋白。
出芽酵母的生活史如下图1所示,其野生型基因发生突变后,表现为突变型(如图2所示)。研究发现该突变型酵母(单倍体)中有少量又回复为野生型表现型,请分析回答:
(1)酵母的生殖方式Ⅱ与Ⅰ、Ⅲ相比,在减数分裂过程中能发生 ,因而产生的后代具有更大的变异性。
(2)依据图2和表1分析,A基因的突变会导致相应蛋白质的合成 ,进而使其功能缺失。
(3)研究者提出两种假设来解释突变型酵母回复为野生型表现型的原因。
①假设一:a基因又突变回A基因。提出此假设的依据是基因突变具有 性。
②假设二:a基因未发生突变,编码能携带谷氨酰胺的tRNA的基因B突变为b基因(a、b基因位于非同源染色体上)。在a基因表达过程中,b基因的表达产物携带的氨基酸为________,识别的密码子为 ,使a基因指导合成出完整的、有功能的蛋白质。
(4)为检验以上假设是否成立,研究者将回复后的单倍体野生型酵母与原始单倍体野生型酵母进行杂交,获取二倍体个体(F1),培养F1,使其减数分裂产生大量单倍体后代,检测并统计这些单倍体的表现型。
①若F1的单倍体子代表现型为 ,则支持假设一。
②若F1的单倍体子代野生型与突变型比例为3:1,则支持假设二,F1的单倍体子代中野生型个体的基因型是 ,来源于一个F1细胞的四个单倍体子代酵母细胞的表现型及比例可能为 。
基因A编码酶A,当其发生突变时,其编码产物可能发生变化。表l显示了该基因四种突变编码的产物的变化情况。表2是突变2与突变前细胞中几种物质含量的变化。
表1(与突变前的酶活性和氨基酸数目比值)
表2
请分析回答:
(1)突变1和突变2均可能是由于基因A中碱基对发生_________而引起的。突变3可能是由于碱基对发生替换从而导致____________________________。突变1所编码的产物没有改变的原因是_____________________________________________________________。
(2)分析表2可知,突变2细胞中突变基因2所编码的酶所催化的化学反应较慢,除了因为该酶活性较低外,还可能因为细胞中__________________________________________。
(3)真核生物细胞中常常出现一条mRNA上聚集着多个核糖体,其意义是_____________
________________________________________________________________________。
亨廷顿舞蹈症是一种遗传神经退化疾病,主要病因是患者第四号染色体上的Huntington基因(用字母H表示)发生变异,产生了变异的蛋白质,该蛋白质在细胞内逐渐聚集,形成大的分子团。一般患者在中年发病,逐渐丧失说话、行动、思考和吞咽的能力,病情大约会持续发展15年到20年,并最终导致患者死亡。在一次人口普查过程中,偶然发现一特殊罕见男患者,其病情延迟达30年以上。通过家谱发现,该男子的父亲患该病,母亲正常,但其外祖父和外祖母皆因患该病死亡。经基因检测,发现该男患者与其他患者相比,出现一个A基因。
(1)由该家族的情况判断,亨廷顿舞蹈症遗传方式为________。
(2)出现A基因的根本原因是________。从发病机理分析,A基因能够使病情延迟大30年以上,最可能的解释是________________________。
(3)若已知A基因位于常染色体上且与H基因不在同一对染色体上。该男患者已经与一正常女性婚配,生一个正常男孩的几率是______。若他们的第二个孩子已确诊患有亨廷顿舞蹈症,则该小孩出现病情延迟的几率是______。
某雌雄同株的二倍体植物宽叶(M)对窄叶(m)为显性,高茎(H)对矮茎(h)为显性,红花(R)对白花(r)为显性。基因M、m与基因R、r在2号染色体上,基因H、h在4号染色体上。
(1)植物出现窄叶是宽叶基因突变导致的,M基因突变前的部分序列(含起始密码信息)如图所示(注:起始密码子为AUG)。
图中所示的M基因片段在转录时,________链作为模板链;转录时________酶与DNA分子的 结合;正常情况下基因M在细胞中最多有________个。
(2)现有一个宽叶红花变异个体,基因型为MR,请你用竖线(|)表示相关染色体,用点(·)表示相关基因位置,该植株的体细胞中的基因M、R与染色体关系示意图为________(写出一种情况),该变异属于可遗传变异中的____________。该植株与基因型为mmrr的个体杂交获得F1,请用遗传图解表示该过程。(说明:①各种配子的活力相同;②不要求写出配子;③只要求写出一种情况。)
(3)用某植株(MmHh)的花药进行离体培养,用秋水仙素处理________(填“幼苗”“休眠的种子”“萌发的种子”或“幼苗或萌发的种子”),使染色体数目加倍,形成可育纯合子。
Rb是一种抑癌基因,它在许多不同种类的肿瘤细胞中常常处于突变状态。Rb编码的pRb蛋白能与E2F结合形成复合物。细胞中的E2F能与RNA聚合酶结合启动基因的转录。下图表示pRb蛋白的作用机理。请分析回答相关问题:
(1)图中过程Ⅱ发生的主要场所是_____,RNA聚合酶在DNA上的结合部位称为_____。
(2)高度分化的细胞中,图解中的蛋白激酶最可能处于_____(“激活”或“抑制”)状态。
(3)细胞中Rb基因突变最可能发生于图中的过程_____。研究人员发现一例Rb患者,其Rb基因发生了一对碱基替换,使得精氨酸密码子变成了终止密码。已知精氨酸密码子有CGU、CGC、AGA、AGG,终止密码子有UAA、UAG、UGA,据此推测,该患者Rb基因转录模板链中发生的碱基变化是_____。
(4)与正常细胞相比,肿瘤细胞能无限增殖。癌细胞的增殖方式是_____。癌细胞易发生转移的原因是_____。
(5)结合图示分析可知,肿瘤细胞无限增殖的机理是突变的Rb基因编码的蛋白质不能与_____结合,而使其能够不断启动基因表达合成大量的DNA聚合酶,促进细胞分裂。