如图所示,等边三角形AQC的边长为2L,P、D分别为AQ、AC的中点.水平线QC以下是水平向左的匀强电场,区域Ⅰ(梯形PQCD)内有垂直纸面向里的匀强磁场,磁感应强度大小为B0;区域Ⅱ(三角形APD)内的磁场方向垂直纸面向里,区域Ⅲ(虚线PD之上、三角形APD以外)的磁场与区域Ⅱ大小相等、方向相反.带正电的粒子从Q点正下方,距离Q为L的O点以某一速度射入电场,在电场力作用下以速度v0垂直QC到达该边中点N,经区域Ⅰ再从P点垂直AQ射入区域Ⅲ(粒子重力忽略不计).求:
(1)求该粒子的比荷;
(2)求该粒子从O点运动到N点的时间t1和匀强电场E;
(3)若区域Ⅱ和区域Ⅲ内磁场的磁感应强度为3B0,则粒子经过一系列运动后会返回至O点,求粒子从N点出发再回到N点的运动过程所需的时间t.
如下图,竖直平面坐标系xOy的第一象限,有垂直xOy面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B和E;第四象限有垂直xOy面向里的水平匀强电场,大小也为E;第三象限内有一绝缘光滑竖直放置的半径为R的半圆轨道,轨道最高点与坐标原点O相切,最低点与绝缘光滑水平面相切于N.一质量为m的带电小球从y轴上(y>0)的P点沿x轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O,且水平切入半圆轨道并沿轨道内侧运动,过N点水平进入第四象限,并在电场中运动(已知重力加速度为g).
(1)判断小球的带电性质并求出其所带电荷量;
(2)P点距坐标原点O至少多高;
(3)若该小球以满足(2)中OP最小值的位置和对应速度进入第一象限,通过N点开始计时,经时间t=2小球距坐标原点O的距离s为多远?
(l0分)磁聚焦被广泛的应用在电真空器件中,如图所示,在坐标中存在有界的匀强聚焦磁场,方向垂直坐标平面向外,磁场边界PQ直线与x轴平行,距x轴的距离为,边界POQ的曲线方程为。且方程对称y轴,在坐标x轴上A处有一粒子源,向着不同方向射出大量质量均为m、电量均为q的带正电粒子,所有粒子的初速度大小相同均为v,粒子通过有界的匀强磁场后都会聚焦在x轴上的F点.已知A点坐标为(-a,0),F点坐标为(a,0).不计粒子所受重力和相互作用求:
(1)匀强磁场的磁感应强度;
(2)粒子射入磁场时的速度方向与x轴的夹角为多大时,粒子在磁场中运动时间最长,最长对间为多少?
如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60º。一质量为m的带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30º角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力)。
在平面直角坐标系中,的区域存在着电场强度大小均为E的匀强电场,的部分电场沿x轴正向,的区域电场沿x轴负向。的区域存在一个矩形的垂直纸面向外的匀强磁场,磁感应强度大小为B。一个电荷量为q的正电荷从靠近y轴的第一象限内M点沿y轴负方向以初速度开始运动,恰好从N点进入磁场。已知电荷质量为m且不计重力,OM=2ON。
(1)N点坐标;
(2)若粒子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;
(3)在(2)的前提下,该粒子由M点出发返回到无限靠近M点所需的时间。
如图所示,两块平行金属极板MN水平放置,板长L="l" m,间距d=m,两金属板间电压UMN=1×104V;在平行金属板右侧依次存在ABC和FGH两个全等的正三角形区域,正三角形ABC内存在垂直纸面向里的匀强磁场,三角形的上顶点A与上金属板M平齐,BC边与金属板平行,AB边的中点P恰好在下金属板N的右端点;正三角形FGH内存在垂直纸面向外的匀强磁场,已知A、F、G处于同一直线上,B、C、H也处于同一直线上,AF两点距离为m。现从平行金属极板MN左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m=3×l0kg,带电量q=+l×10C,初速度v0=1×l0 m/s。求:
(1)带电粒子从电场中射出时的速度v的大小和方向?
(2)若带电粒子进入三角形区域ABC后垂直打在AC边上,求该区域的磁感应强度 ?
(3)接第(2)问,若要使带电粒子由FH边界进入FGH区域并能再次回到FH界面,求B2至少应为多大?
如图所示,空间存在一个半径为R0的圆形匀强磁场区域,磁场的方向垂直于纸面向里,磁感应强度的大小为B.有一个粒子源在纸面内沿各个方向以一定速率发射大量粒子,粒子的质量为m、电荷量为+q.将粒子源置于圆心,则所有粒子刚好都不离开磁场,不考虑粒子之间的相互作用.
(1)求带电粒子的速率.
(2)若粒子源可置于磁场中任意位置,且磁场的磁感应强度大小变为,求粒子在磁场中最长的运动时间t.
(3)若原磁场不变,再叠加另一个半径为R1(R1> R0)圆形匀强磁场,磁场的磁感应强度的大小为B/2,方向垂直于纸面向外,两磁场区域成同心圆,此时该离子源从圆心出发的粒子都能回到圆心,求R1的最小值和粒子运动的周期T.
真空中有如图所示矩形区域,该区域总高度为2h、总宽度为4h,其中上半部分有磁感应强度为B、垂直纸面向里的水平匀强磁场,下半部分有竖直向下的匀强电场,x轴恰为水平分界线,正中心恰为坐标原点O.在x=2.5h处有一与x轴垂直的足够大的光屏(图中未画出).质量为m、电荷量为q的带负电粒子源源不断地从下边界中点P由静止开始经过匀强电场加速,通过坐标原点后射入匀强磁场中.粒子间的相互作用和粒子重力均不计.
(1)若粒子在磁场中恰好不从上边界射出,求加速电场的场强E;
(2)若加速电场的场强E为(1)中所求E的4倍,求粒子离开磁场区域处的坐标值;
(3)若将光屏向x轴正方向平移,粒子打在屏上的位置始终不改变,则加速电场的场强E′多大?粒子在电场和磁场中运动的总时间多大?
如图所示,粒子源O产生初速度为零、电荷量为q、质量为m的正离子,被电压为的加速电场加速后通过直管,在到两极板等距离处垂直射入平行板间的偏转电场,两平行板间电压为2。离子偏转后通过极板MN上的小孔S离开电场。已知ABC是一个外边界为等腰三角形的匀强磁场区域,磁场方向垂直纸面向外,边界AB=AC=L,,离子经过一段匀速直线运动,垂直AB边从AB中点进入磁场。(忽略离子所受重力)
(1)若磁场的磁感应强度大小为,试求离子在磁场中做圆周运动的半径;
(2)若离子能从AC边穿出,试求磁场的磁感应强度大小的范围。
一圆筒的横截面如图所示,其圆心为O。筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷。质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中,粒子与圈筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:
(1)M、N间电场强度E的大小;
(2)圆筒的半径R;
(3)保持M、N间电场强度E不变,仅将M板向上平移,粒子仍从M板边缘的P处由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。
如图所示,在直角坐标系的二、三象限内有沿x轴正方向的匀强电场,电场强度大小为E;在一、四象限内以x=L的直线为理想边界的左右两侧存在垂直于纸面的匀强磁场B1和B2,y轴为磁场和电场的理想边界。在x轴上x=L的A点有一个质量为m、电荷量为q的带正电的粒子以速度v沿与x轴负方向成45o的夹角垂直于磁场方向射出。粒子到达y轴时速度方向与y轴刚好垂直。若带点粒子经历在电场和磁场中的运动后刚好能够返回A点(不计粒子的重力)。
(1)判断磁场B1、B2的方向;
(2)计算磁感应强度B1、B2的大小;
(3)求粒子从A点出发到第一次返回A点所用的时间。
在边长为a的等边三角形ABC区域内有一匀强磁场,磁感应强度为B,方向垂直纸面向里,一带正电的粒子质量为m,电量为q,由BC边中点O沿平行于AB的方向射入磁场,速度大小为v0,忽略粒子的重力.
(1)若粒子刚好垂直AB边飞出磁场,求粒子在磁场中的运动时间;
(2)如果要求粒子在磁场中的飞行时间最长,求粒子的速度必须满足的条件。
如图(a)所示,在以直角坐标系xOy的坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直xOy所在平面的匀强磁场。一带电粒子由磁场边界与x轴的交点A处,以速度v0沿x轴负方向射入磁场,粒子恰好能从磁场边界与y轴的交点C处,沿y轴正方向飞出磁场,不计带电粒子所受重力。
(1)求粒子的荷质比。(要求画出粒子在磁场中运动轨迹的示意图)
(2)若磁场的方向和所在空间的范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,粒子飞出磁场时速度的方向相对于入射方向改变了θ角,如图(b)所示,求磁感应强度B′的大小。(要求画出粒子在磁场中运动轨迹的示意图)
如图所示,左侧装置内存在着匀强磁场和方向竖直向下的匀强电场,装置上、下两极板间电势差为U,间距为L;右侧为“台形”匀强磁场区域ACDH,其中,AH//CD,AH=4L。一束电荷量大小为q、质量不等的带电粒子 (不计重力、可视为质点),从狭缝S1射人左侧装置中恰能沿水平直线运动并从狭缝S2射出,接着粒子垂直于AH、由AH的中点M射人“台形”区域,最后全部从边界AC射出。若两个区域的磁场方向均水平(垂直于纸面向里)、磁感应强度大小均为B,“台形”宽度MN=L,忽略电场、磁场的边缘效应及粒子间的相互作用。
(1)判定这束粒子所带电荷的种类,并求出粒子速度的大小;
(2)求出这束粒子可能的质量最小值和最大值;
(3)求出(2)问中偏转角度最大的粒子在“台形”区域中运动的时间。