如图所示,在真空中,半径为R的虚线所围的圆形区域内只存在垂直纸面向外的匀强磁场。有一电荷量为q、质量为m的带正电粒子,以速率V0从圆周上的P点沿垂直于半径OOl并指向圆心O的方向进入磁场,从圆周上的O1点飞出磁场后沿两板的中心线O1O2射入平行金属板M和N, O1O2与磁场区域的圆心O在同一直线上。板间存在匀强电场,两板间的电压为U,两板间距为d。不计粒子所受重力。求:
(1)磁场的磁感应强度B的大小;
(2)粒子在磁场中运动的时间;
(3)粒子在两平行板间运动过程中的最大速度与板长L的关系。
如图所示,平面直角坐标系第一象限存在竖直向上的匀强电场,距离原点O为3a处有一个竖直放置的荧光屏,荧光屏与x轴相交于Q点,且纵贯第四象限。一个顶角等于30°的直角三角形区域内存在垂直平面向里的匀强磁场,三角形区域的一条直角边ML与y轴重合,且ML被x轴垂直平分。已知ML的长度为6a,磁感应强度为B,电子束以相同的速度v0从LO区间垂直y轴和磁场方向射入直角三角形区域。从y=-2a射入磁场的电子运动轨迹恰好经过原点O,假设第一象限的电场强度大小为E=Bv0,试求:
(1)电子的比荷;
(2)电子束从+y轴上射入电场的纵坐标范围;
(3)从磁场中垂直于y轴射入电场的电子打到荧光屏上距Q点的最远距离。
如图甲所示,在光滑绝缘水平桌面内建立xOy坐标系,在第Ⅱ象限内有平行于桌面的匀强电场,场强方向与x轴负方向的夹角θ=45°。在第Ⅲ象限垂直于桌面放置两块相互平行的平板C1、C2,两板间距为d1=0.6m,板间有竖直向上的匀强磁场,两板右端在y轴上,板C1与x轴重合,在其左端紧贴桌面有一小孔M,小孔M离坐标原点O的距离为l1=0.72m。在第Ⅳ象限垂直于x 轴放置一竖直平板C3,垂足为Q,Q、O相距d2=0.18m,板C3长l2=0.6m。现将一带负电的小球从桌面上的P点以初速度垂直于电场方向射出,刚好垂直于x轴穿过C1板上的M孔,进入磁场区域。已知小球可视为质点,小球的比荷,P点与小孔M在垂直于电场方向上的距离为,不考虑空气阻力。求:
(1)匀强电场的场强大小;
(2)要使带电小球无碰撞地穿出磁场并打到平板C3上,求磁感应强度B的取值范围;
(3)以小球从M点进入磁场开始计时,磁场的磁感应强度随时间呈周期性变化,如图乙所示,则小球能否打在平板C3上?若能,求出所打位置到Q点距离;若不能,求出其轨迹与平板C3间的最短距离。(,计算结果保留两位小数)
如图所示,平面直角坐标系第一象限存在竖直向上的匀强电场,距离原点O为3a处有一个竖直放置的荧光屏,荧光屏与x轴相交于Q点,且纵贯第四象限。一个顶角等于30°的直角三角形区域内存在垂直平面向里的匀强磁场,三角形区域的一条直角边ML与y轴重合,且MN被x轴垂直平分。已知ML的长度为6a,磁感应强度为B,电子束以相同的速度v0从LO区间垂直y轴和磁场方向射入直角三角形区域。从y=-2a射入磁场的电子运动轨迹恰好经过原点O,假设第一象限的电场强度大小为E=Bv0,试求:
(1)电子的比荷;
(2)电子束从+y轴上射入电场的纵坐标范围;
(3)从磁场中垂直于y轴射入电场的电子打到荧光屏上距Q点的最远距离。
如图所示,平行四边形CDEF的DE边的长度是CD边的长度的2倍,CD的长度为d,且CD边与对角线DF垂直,垂直平行四边形平面的匀强磁场仅分布在平行四边形CDEF内部,CF边界以上的足够大区域内有如图所示的匀强电场。一束比荷为k的正粒子以相同速率v从D点沿DE方向射入磁场,不计粒子之间的作用,假设粒子都能从CF边上射出磁场,试求:
(1)匀强磁场的磁感应强度范围;
(2)要使带电粒子离开磁场的速度方向恰好与CF垂直,求此时的磁感应强度;
(3)若满足条件(2)的粒子在电场中的运动轨迹与DF延长线的交点到F点的距离为3d,求匀强电场的电场强度E0。
利用如图所示装置可调控带电粒子的运动,通过改变左端粒子入射速度的大小,可以控制粒子到达右端接收屏上的位置,装置的上下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B、方向与纸面垂直且相反,磁场区域的宽度均为h,磁场区域长均为15h,P、Q为接收屏上的二点,P位于轴线上,Q位于下方磁场的下边界上。在纸面内,质量为m、电荷量为+q的粒子以某一速度从装置左端的中点射入,方向与轴线成370角,经过上方的磁场区域一次,恰好到达Q点。不计粒子的重力 (sin370=0.6、cos370=0.8)。问:
(1)上下两磁场间距x为多少?
(2)仅改变入射粒子的速度大小,使粒子能打到屏上P点,求此情况下入射速度大小的所有可能值。
|
(9分) 如图所示,在空间中存在垂直纸面向外、宽度为d的有界匀强磁场.一质量为m,带电荷量为q的粒子自下边界的P点处以速度v沿与下边界成30°角的方向垂直射入磁场,恰能垂直于上边界射出,不计粒子重力,题中d、m、q、v均为已知量.则:
(1)粒子带何种电荷?
(2)磁场的磁感应强度为多少?
分如图所示,某放射源A中均匀地向外辐射出平行于y轴的、速度一定的a粒子(质量为m,电荷量为+q)。为测定其飞出的速度大小,现让其先经过一个磁感应强度为B、区域为半圆形的匀强磁场,经该磁场偏转后,它恰好能够沿x轴进入右侧的平行板电容器,并打到置于N板上的荧光屏上。调节滑动触头,当触头P位于滑动变阻器的中央位置时,通过显微镜头Q看到屏上的亮点恰好能消失.已知电源电动势为E,内阻为r0,滑动变阻器的总阻值R0="2" r0,问:
(1)a粒子的速度大小v0=?
(2)满足题意的a粒子,在磁场中运动的总时间t=?
(3)该半圆形磁场区域的半径R=?
(15分)如图所示,为一磁约束装置的原理图,圆心为原点O、半径为R0的圆形区域Ⅰ内有方向垂直xoy平面向里的匀强磁场。一束质量为m、电量为q、动能为E0的带正电粒子从坐标为(0、R0)的A点沿y轴负方向射入磁场区域Ⅰ,粒子全部经过x轴上的P点,方向沿x轴正方向。当在环形区域Ⅱ加上方向垂直于xoy平面的匀强磁场时,上述粒子仍从A点沿y轴负方向射入区域Ⅰ,粒子经过区域Ⅱ后从Q点第2次射入区域Ⅰ,已知OQ与x轴正方向成600。不计重力和粒子间的相互作用。求:
(1)区域Ⅰ中磁感应强度B1的大小;
(2)若要使所有的粒子均约束在区域内,则环形区域Ⅱ中B2的大小、方向及环形半径R至少为大;
(3)粒子从A点沿y轴负方向射入后至再次以相同的速度经过A点的运动周期。
如图(甲)所示,两平行金属板间接有如图(乙)所示的随时间t变化的电压u,两板间电场可看作是均匀的,且两板外无电场,极板长L=0.2m,板间距离d=0.2m,在金属板右侧有一边界为MN的区域足够大的匀强磁场,MN与两板中线OO′垂直,磁感应强度B=5×10-3T,方向垂直纸面向里。现有带正电的粒子流沿两板中线OO′连续射入电场中,已知每个粒子的速度v0=105m/s,比荷q/m=108C/kg,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的。
(1)试求带电粒子能够射出电场时的最大电压和对应的射出速度大小。
(2)证明任意时刻从电场射出的带电粒子,进入磁场时在MN上的入射点和出磁场时在MN上的出射点间的距离为定值。
(3)从电场射出的带电粒子,进入磁场运动一段时间后又射出磁场。求粒子在磁场中运动的最长时间和最短时间。
如图所示,半径为的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为,速度大小为。则粒子在磁场中运动的最长时间为
A. | B. | C. | D. |
如图所示,竖直平面内有一直角坐标系,在y轴的右侧存在无限大的、场强大小为E、水平向左的匀强电场,在y轴的左侧同时存在一个垂直纸面向外、磁感应强度大小为B、水平宽度为a的匀强磁场Ⅰ.有一不计重力、带正电、比荷为的粒子由+x轴上某一位置无初速度释放.
(1)若其恰好经过磁场Ⅰ左边界上P点,求粒子射出磁场Ⅰ的速度v1的大小;
(2)若其恰好经过y轴上的Q点,求粒子从释放开始第一次到达Q所用的时间;
(3)若匀强磁场Ⅰ左侧同时存在一个垂直纸面向里、磁感应强度大小也为B的无限大匀强磁场Ⅱ,要使粒子第二次沿+x方向运动时恰经过y轴上的M点,试求其在+x轴上无初速度释放时的位置坐标.
如图所示,在x>O、y>O的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B.现有一质量为m、电量为q的带正电粒子,从在x轴上的某点P沿着与x轴成30°角的方向射入磁场。不计重力的影响,则下列有关说法中正确的是
A.粒子在磁场中运动所经历的时间可能为
B.粒子在磁场中运动所经历的时间可能为
C.只要粒子的速率合适,粒子就可能通过坐标原点
D.粒子一定不可能通过坐标原点
如图所示,以直角三角形AOC为边界的有界匀强磁场区域,磁感应强度为B,∠A=60°,AO=L.在O点放置一个粒子源,可以向各个方向发射某种带负电粒子,粒子的比荷为q/m,发射速度大小都为v0,且满足v0=,发射方向由图中的角度θ表示.对于粒子进入磁场后的运动(不计重力作用),下列说法正确的是
A.粒子有可能打到A点 |
B.以θ=60°飞入的粒子在磁场中运动时间最短 |
C.以θ<30°飞入的粒子在磁场中运动的时间都相等 |
D.在AC边界上只有一半区域有粒子射出 |