在如图所示,x轴上方有一匀强磁场,磁感应强度的方向垂直于纸面向里,大小为B,x轴下方有一匀强电场,电场强度的大小为E,方向与y轴的夹角θ为45o且斜向上方。现有一质量为m电量为q的正离子,以速度v0由y轴上的A点沿y轴正方向射入磁场,该离子在磁场中运动一段时间后从x轴上的C点进入电场区域,该离子经C点时的速度方向与x轴夹角为45o。 不计离子的重力,设磁场区域和电场区域足够大。求:
|
(1)C点的坐标;
(2)离子从A点出发到第三次穿越x轴时的运动时间;在真空室内取坐标系xOy,在x轴上方存在二个方向都垂直于纸面向外的磁场区Ⅰ和Ⅱ(如图),平行于x轴的虚线MM’和NN’是它们的边界线,两个区域在y方向上的宽度都为d、在x方向上都足够长.Ⅰ区和Ⅱ区内分别充满磁感应强度为B和的匀强磁场.一带正电的粒子质量为m、电荷量为q,从坐标原点O以大小为v的速度沿y轴正方向射入Ⅰ区的磁场中.不计粒子的重力作用.
(1)如果粒子只是在Ⅰ区内运动而没有到达Ⅱ区,那么粒子的速度v满足什么条件?粒子运动了多长时间到达x轴?
(2)如果粒子运动过程经过Ⅱ区而且最后还是从x轴离开磁场,那么粒子的速度v又满足什么条件?并求这种情况下粒子到达x轴的坐标范围?
如图所示,在平面坐标系xOy内,第二三象限内存在沿y轴正方向的匀强电场,第一四象限内存在半径为L的圆形匀强磁场,磁场圆心在M(L,0)点,磁场方向垂直于坐标平面向外,一带正电的粒子从第三象限中的Q(-2L,-L)点以速度沿x轴正方向射出,恰好从坐标原点O进入磁场,从P(2L,0)点射出磁场,不计粒子重力,求:
(1)电场强度与磁感应强度大小之比。
(2)粒子在磁场与电场中运动时间之比。
如图所示,在一个矩形区域abcd内,有两个方向相反且都垂直纸面的匀强磁场分布在以对角线bd为边界的两个区域Ⅰ、Ⅱ内,已知ab边长为,ad与ac夹角为=300。一质量为带电量为的粒子以速度V0从Ⅰ区边缘a点沿ad方向射入磁场,随后粒子经过ac与bd交点o进入Ⅱ区(粒子重力不计)。
求Ⅰ区的磁感应强度的方向和大小
如果粒子最终能从cd边射出磁场,求Ⅱ区磁感应强度应满足的条件
如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小,磁场内有一块平面感光板,板面与磁场方向平行,在距的距离处,有一个点状的放射源S,它向各个方向发射粒子,粒子的速度都是,已知粒子的电荷与质量之比,现只考虑在图纸平面中运动的粒子,求上被粒子打中的区域的长度。
如图所示,相距为d、板间电压为U的平行金属板M、N间有垂直纸面向里、磁感应强度为B0的匀强磁场;在pOy区域内有垂直纸面向外磁感应强度为B的匀强磁场;pOx区域为无场区.一正离子沿平行于金属板、垂直磁场射入两板间并做匀速直线运动,从H(0,a)点垂直y轴进入第Ⅰ象限.
求离子在平行金属板间的运动速度;
若离子经Op上某点离开磁场,最后垂直x轴离开第Ⅰ象限,求离子在第Ⅰ象限磁场区域的运动时间;
要使离子一定能打在x轴上,则离子的荷质比应满足什么条件?
如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B.圆心O处有一放射源,放出粒子的质量为m,带电荷量为q,假设粒子速度方向都和纸面平行, 不计粒子重力。
(1)图中箭头表示某一粒子初速度的方向,OA与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A点,则初速度的大小是多少?
(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?
如图所示装置中,区域Ⅰ中有竖直向上的匀强电场,电场强度为E,区域Ⅱ内有垂直纸面向外的水平匀强磁场,磁感应强度为B。区域Ⅲ中有垂直纸面向里的水平匀强磁场,磁感应强度为2B。一质量为m、带电量为q的带负电粒子(不计重力)从左边界O点正上方的M点以速度v0水平射入电场,经水平分界线OP上的A点与OP成60°角射入Ⅱ区域的磁场,并垂直竖直边界CD进入Ⅲ区域的匀强磁场中。求:
(1)粒子在Ⅱ区域匀强磁场中运动的轨道半径
(2)O、M间的距离
(3)粒子从M点出发到第二次通过CD边界所经历的时间
真空中有如图所示矩形区域,该区域总高度为2h、总宽度为4h,其中上半部分有磁感应强度为B、垂直纸面向里的水平匀强磁场,下半部分有竖直向下的匀强电场,x轴恰为水平分界线,正中心恰为坐标原点O.在x=2.5h处有一与x轴垂直的足够大的光屏(图中未画出).质量为m、电荷量为q的带负电粒子源源不断地从下边界中点P由静止开始经过匀强电场加速,通过坐标原点后射入匀强磁场中.粒子间的相互作用和粒子重力均不计.
(1)若粒子在磁场中恰好不从上边界射出,求加速电场的场强E;
(2)若加速电场的场强E为(1)中所求E的4倍,求粒子离开磁场区域处的坐标值;
(3)若将光屏向x轴正方向平移,粒子打在屏上的位置始终不改变,则加速电场的场强E′多大?粒子在电场和磁场中运动的总时间多大?
如图所示,一个圆形有界匀强磁场半径为,磁场方向垂直纸面向外,一个质量为,带电量为的带正电的粒子(重力不计)由点沿水平方向以速度正对圆心射入有界磁场区域,从点射出时速度方向偏转了。求:
(1)该磁场的磁感应强度?
(2)若要把该磁场去掉,换成竖直向下的匀强电场,要求该粒子依然从点射出,请计算计算电场强度与磁感应强度的比值?
如图所示,在平面直角坐标系xoy的第四象限有垂直纸面向里的匀强磁场,一质量为m=5.0×10﹣8kg、电量为q=1.0×10﹣6C的带电粒子,从静止开始经U0=10V的电压加速后,从P点沿图示方向进入磁场,已知OP=30cm,(粒子重力不计,sin37°=0.6,cos37°=0.8),求:
(1)带电粒子到达P点时速度v的大小
(2)若磁感应强度B=2.0T,粒子从x轴上的Q点离开磁场,求QO的距离
(3)若粒子不能进入x轴上方,求磁感应强度B'满足的条件.
如图所示,A点距坐标原点的距离为l,坐标平面内有边界过A点和坐标原点O的圆形匀强磁场区域,磁场方向于垂直坐标平面向里。有一电子(质量为m、电荷量为e)从A点以初速度v0平行x轴正方向射入磁场区域,在磁场中运行,从x轴上的B 点射出磁场区域,此时速度方向与x轴的正方向之间的夹角为60°,求:
⑴磁场的磁感应强度大小;
⑵磁场区域的圆心O1的坐标;
⑶电子在磁场中运动的时间。
“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2。足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L。假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响。
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有2/3能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;
(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件。试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子。
(12 分)在平面直角坐标系xoy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以一定的初速度垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,已知ON=d,如图所示.不计粒子重力,求:
(1)粒子在磁场中运动的轨道半径R;
(2)粒子在M点的初速度的大小;
(3)粒子从M点运动到P点的总时间t.