在如图所示的竖直平面内,水平轨道CD和长度的倾斜轨道GH与半径的光滑圆弧轨道分别相切于D点和G点,GH与水平面的夹角,过G点、垂直于纸面的竖直平面左侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度;过D点、垂直于纸面的竖直平面右侧有匀强电场,电场方向水平向右,电场强度。小物体质量、电荷量,受到水平向右的推力的作用,沿CD向右做匀速直线运动,到达D点后撤去推力。与轨道CD、GH间的动摩擦因数均为,取,,物体电荷量保持不变,不计空气阻力。求:
(1)小物体到达G点时的速度v的大小;
(2)小物体从G点运动到斜面顶端H点所用的时间.
在xoy平面内存在着如图所示的电场和磁场,其中二、四象限内电场方向与y轴平行且相反,大小为E,一、三象限内磁场方向垂直平面向里,大小相等.一个带电粒子质量为m,电荷量为q,从第四象限内的P(L,﹣L)点由静止释放,粒子垂直y轴方向进入第二象限,求:
(1)磁场的磁感应强度B;
(2)粒子第二次到达y轴的位置;
(3)粒子从释放到第二次到达y轴所用时间.
(10分)汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内的阴极K发出的电子经加速电压加速后,穿过A’中心的小孔沿中心线(O1O的方向进入到两块水平正对放置的平行极板P和P’间的区域,极板间距为d。当P和P’极板间不加偏转电压时,电子束打在荧光屏的中心O点处,形成了一个亮点;当P和P’极板间加上偏转电压U后,亮点偏离到O’点;此时,在P和P’间的区域,再加上一个方向垂直于纸面向里的匀强磁场,调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到O点。不计电子的初速度、所受重力和电子间的相互作用。
(1)求电子经加速电场加速后的速度大小;
(2)若不知道加速电压值,但己知P和P’极板水平方向的长度为L1,它们的右端到荧光屏中心O点的水平距离为L2,(O于O’点的竖直距离为h,(O'与0点水平距离可忽略不计),求电子的比荷。
在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向里的匀强磁场,磁感应强度为B,一质量为m、电荷量为q的带正电的粒子经过加速电场加速从y轴正半轴上的A点以某速度垂直于y轴射入电场,经x轴上的M点与x轴正方向成θ角射入磁场,从x轴上的N点离开磁场,MN之间的距离为l,(不计粒子重力),求:
(1)粒子在磁场中速度v大小;
(2)加速电场的电压;
(3)若A点到x轴的高度OA=h,求匀强电场的电场强度.
如下图所示,相距为d、板间电压为U的平行金属板M、N间有垂直纸面向里、磁感应强度为B0的匀强磁场;在pOy区域内有垂直纸面向外、磁感应强度为B的匀强磁场;pOx区域为无场区.一正离子沿平行于金属板、垂直磁场射入两板间并做匀速直线运动,从H(0,a)点垂直y轴进入第Ⅰ象限.
(1)求离子在平行金属板间的运动速度;
(2)若离子经Op上某点离开磁场,最后垂直x轴离开第Ⅰ象限,求离子在第Ⅰ象限磁场区域的运动时间;
(3)要使离子一定能打在x轴上,则离子的荷质比应满足什么条件?
如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小,磁场内有一块平面感光板,板面与磁场方向平行,在距的距离处,有一个点状的放射源S,它向各个方向发射粒子,粒子的速度都是,已知粒子的电荷与质量之比,现只考虑在图纸平面中运动的粒子,求上被粒子打中的区域的长度。
如图所示,左侧装置内存在着匀强磁场和方向竖直向下的匀强电场,装置上下两极板间电势差为U,间距为L,右侧为“梯形”匀强磁场区域ACDH,其中,AH//CD, =4L。一束电荷量大小为q、质量不等的带电粒子(不计重力、可视为质点),从狭缝S1射入左侧装置中恰能沿水平直线运动并从狭缝S2射出,接着粒子垂直于AH、由AH的中点M射入“梯形”区域,最后全部从边界AC射出。若两个区域的磁场方向均水平(垂直于纸面向里)、磁感应强度大小均为B,“梯形”宽度=L,忽略电场、磁场的边缘效应及粒子间的相互作用。
(1)判定这束粒子所带电荷的种类,并求出粒子速度的大小;
(2)求出这束粒子可能的质量最小值和最大值;
(3)求出(2)问中偏转角度最大的粒子在“梯形”区域中运动的时间。
如图所示,一束质量、电荷量的带负电的粒子以某一速率通过一个矩形空间的匀强磁场,磁感应强度B=0.2T;速度方向与磁感线垂直,带电粒子从A点沿AD方向射入,已知AB=DC=0.4m,AD=BC=,求:
(1)若带电粒子的运动速率为,则其在磁场中运动半径R1为多少?
(2)若带电粒子恰好从C点离开磁场,则其在磁场中运动半径R2和速率v2各为多少?
现代科学仪器常利用电场、磁场控制带电粒子的运动。在真空中存在着如图所示的多层紧密相邻的匀强电场和匀强磁场,电场和磁场的宽度均为d。电场强度为E,方向水平向右;磁感应强度为B,方向垂直纸面向里。电场、磁场的边界互相平行且与电场方向垂直,一个质量为m、电荷量为q的带正电粒子在第1层电场左侧边界某处由静止释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射
(1)求粒子在第2层磁场中运动时速度 的大小与轨迹半径 ;
(2)粒子从第n层磁场右侧边界穿出时,速度的方向与水平方向的夹角为 ,试求 ;
(3)若粒子恰好不能从第n层磁场右侧边界穿出,试问在其他条件不变的情况下,也进入第n层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之。
(多选)如图,两个初速度大小相同的同种离子a和b,从O点沿垂直磁场方向进人匀强磁场,其中离子b的速度方向与磁场边界垂直,离子a的速度方向与b成夹角θ,两离子最后打到O点左侧的屏P上.不计重力,下列说法正确的有( )
A.a、b均带正电 |
B.a和b在P上的落点相同 |
C.a在磁场中运动的轨道半径比b的小 |
D.a在磁场中运动的时间比b的长 |
真空中有如图所示矩形区域,该区域总高度为2h、总宽度为4h,其中上半部分有磁感应强度为B、垂直纸面向里的水平匀强磁场,下半部分有竖直向下的匀强电场,x轴恰为水平分界线,正中心恰为坐标原点O.在x=2.5h处有一与x轴垂直的足够大的光屏(图中未画出).质量为m、电荷量为q的带负电粒子源源不断地从下边界中点P由静止开始经过匀强电场加速,通过坐标原点后射入匀强磁场中.粒子间的相互作用和粒子重力均不计.
(1)若粒子在磁场中恰好不从上边界射出,求加速电场的场强E;
(2)若加速电场的场强E为(1)中所求E的4倍,求粒子离开磁场区域处的坐标值;
(3)若将光屏向x轴正方向平移,粒子打在屏上的位置始终不改变,则加速电场的场强E′多大?粒子在电场和磁场中运动的总时间多大?
如图所示,一个圆形有界匀强磁场半径为,磁场方向垂直纸面向外,一个质量为,带电量为的带正电的粒子(重力不计)由点沿水平方向以速度正对圆心射入有界磁场区域,从点射出时速度方向偏转了。求:
(1)该磁场的磁感应强度?
(2)若要把该磁场去掉,换成竖直向下的匀强电场,要求该粒子依然从点射出,请计算计算电场强度与磁感应强度的比值?
如图所示,在平面直角坐标系xoy的第四象限有垂直纸面向里的匀强磁场,一质量为m=5.0×10﹣8kg、电量为q=1.0×10﹣6C的带电粒子,从静止开始经U0=10V的电压加速后,从P点沿图示方向进入磁场,已知OP=30cm,(粒子重力不计,sin37°=0.6,cos37°=0.8),求:
(1)带电粒子到达P点时速度v的大小
(2)若磁感应强度B=2.0T,粒子从x轴上的Q点离开磁场,求QO的距离
(3)若粒子不能进入x轴上方,求磁感应强度B'满足的条件.
如图所示,在x轴下方的区域内存在+y方向的匀强电场,电场强度为E.在x轴上方以原点O为圆心、半径为R的半圆形区域内存在匀强磁场,磁场的方向垂直于xoy平面向外,磁感应强度为B.﹣y轴上的A点与O点的距离为d,一个质量为m、电荷量为q的带正电粒子从A点由静止释放,经电场加速后从O点射入磁场,不计粒子的重力.
(1)求粒子在磁场中运动的轨道半径r;
(2)要使粒子进人磁场之后不再经过x轴,求电场强度的取值范围;
(3)改变电场强度,使得粒子经过x轴时与x轴成θ=30°的夹角,求此时粒子在磁场中的运动时间t及经过x轴的位置坐标值x0.
一圆筒的横截面如图所示,其圆心为O。筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷。质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中,粒子与圈筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:
(1)M、N间电场强度E的大小;
(2)圆筒的半径R;
(3)保持M、N间电场强度E不变,仅将M板向上平移,粒子仍从M板边缘的P处由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。