如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直。一质量为m、电荷量为-q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场。已知OP=L,OQ=2L。不计重力。求:
(1)粒子从P点入射的速度v0的大小;
(2)匀强磁场的磁感应强度B的大小。
如图所示,直角三角形ABC区域中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,分别从AC边上的P、Q两点射出,则( )
A.从P射出的粒子速度大 |
B.从Q射出的粒子速度大 |
C.从P射出的粒子,在磁场中运动的时间长 |
D.两粒子在磁场中运动的时间一样长 |
如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场.A板带正电荷,B板带等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强度为B1.平行金属板右侧有一挡板M,中间有小孔O′,OO′是平行于两金属板的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁场感应强度为B2.CD为磁场B2边界上的一绝缘板,它与M板的夹角θ=45°,=a,现有大量质量均为m,含有各种不同电荷量、不同速度的带正负电粒子(不计重力),自O点沿OO′方向进入电磁场区域,其中有些粒子沿直线OO′方向运动,并进入匀强磁场B2中,求:
(1)进入匀强磁场B2的带电粒子的速度;
(2)能击中绝缘板CD的粒子中,所带电荷量的最大值;
(3)绝缘板CD上被带电粒子击中区域的长度.
如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,分别从AC边上的P、Q两点射出,则( )
A.从P射出的粒子速度大 |
B.从Q射出的粒子速度大 |
C.从P射出的粒子,在磁场中运动的时间长 |
D.从Q射出的粒子,在磁场中运动的时间长 |
如图所示,在平面坐标系xOy内,第二三象限内存在沿y轴正方向的匀强电场,第一四象限内存在半径为L的圆形匀强磁场,磁场圆心在M(L,0)点,磁场方向垂直于坐标平面向外,一带正电的粒子从第三象限中的Q(-2L,-L)点以速度沿x轴正方向射出,恰好从坐标原点O进入磁场,从P(2L,0)点射出磁场,不计粒子重力,求:
(1)电场强度与磁感应强度大小之比。
(2)粒子在磁场与电场中运动时间之比。
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点A(0,L)。一质量为m、电荷量为e的电子从A点以初速度v0平行于x轴正方向射入磁场,并从x轴上的B点射出磁场,射出B点时的速度方向与x轴正方向的夹角为60°。求:
(1)匀强磁场的磁感应强度B的大小;
(2)电子在磁场中运动的时间t。
有一等腰直角ABC三角形区域,直角边长为。在该区域,有一垂直纸面向内磁感应强度为的匀强磁场。一束质量为、电荷量为,带负电粒子以不同速度从中点垂直直角边射入该磁场区域,在另一直角边放置一块荧光屏,如图所示。重力不计,求
(1)当粒子以入射时,求粒子在荧光屏上光斑的位置及在磁场中运动的时间。
(2)荧光屏AB区域上光斑的分布区域。
(3)若把磁场更换成沿AC方向的场强为E的匀强电场,当粒子以入射时,求粒子在荧光屏上光斑的位置
(4)把磁场更换成沿AC方向的场强为E的匀强电场,荧光屏AB区域上光斑的分布区域。
如图所示,水平放置的平行板电容器间有垂直纸面向里的匀强磁场,开关S闭合时一带电粒子恰好水平向右匀速穿过两板,重力不计。对相同状态入射的粒子,下列说法正确的是
A.保持开关闭合,若滑片P向上滑动,粒子不可能从极板边缘射出 |
B.保持开关闭合,若滑片P向下滑动,粒子不可能从极板边缘射出 |
C.保持开关闭合,若A极板向上移动后,调节滑片P的位置,粒子仍可能沿直线射出 |
D.如果开关断开,粒子继续沿直线射出 |
如图所示,在x轴上方存在垂直于纸面向里的足够宽的匀强磁场,磁感应强度为B。在xoy平面内,从原点O处沿与x轴正方向成θ角(0<θ<π)以速率v发射一个带正电的粒子(重力不计).则下列说法正确的是
A.若v一定,θ越大,则粒子在磁场中运动的时间越短
B.若v一定,θ越大,则粒子在离开磁场的位置距O点越远
C.若θ一定,v越大,则粒子在磁场中运动的角速度越大
D.若θ一定,v越大,则粒子在磁场中运动的时间越短
如图所示,在的空间中有恒定的匀强磁场,磁感强度的方向垂直于Oxy平面向里,大小为B。现有一质量为m电量为q的带电粒子(不计重力),在x轴上到原点的距离为的P点,以平行于y轴的初速度射入此磁场,在磁场力作用下沿垂直于y轴的方向射出此磁场。由这些条件可知
A.带电粒子一定带正电
B.不能确定粒子速度的大小
C.不能确定粒子射出此磁场的位置
D.不能确定粒子在此磁场中运动所经历的时间
在xOy平面上以O为圆心、半径为r的圆形区域内,存在磁感应强度为B的匀强磁场,磁场方向垂直于xOy平面.一个质量为m、电荷量为q的带电粒子,从原点O以初速度v沿y轴正方向开始运动,经时间t后经过x轴上的P点,此时速度与x轴正方向成θ角,如图所示.不计重力的影响,则下列关系一定成立的是( ).
A.若r<,则0°<θ<90° | B.若r≥,则t≥ |
C.若t=,则r= | D.若r=,则t= |
如图所示,MN是磁感应强度为B的匀强磁场的边界.一质量为m、电荷量为q的粒子在纸面内从O点射入磁场.若粒子速度为v0,最远能落在边界上的A点.下列说法正确的有( )
A.若粒子落在A点的左侧,其速度一定小于v0 |
B.若粒子落在A点的右侧,其速度一定大于v0 |
C.若粒子落在A点左右两侧d的范围内,其速度不可能小于v0- |
D.若粒子落在A点左右两侧d的范围内,其速度不可能大于v0+ |
如图,在半径为R=mv0/qB的圆形区域内有水平向里的匀强磁场,磁感应强度为B.圆形区域右侧有一竖直感光板MN.带正电粒子从圆弧顶点P以速率v0平行于纸面进入磁场,已知粒子质量为m,电量为q,粒子重力不计.若粒子对准圆心射入,则下列说法中正确的是
A.粒子一定沿半径方向射出
B.粒子在磁场中运动的时间为 πm/2qB
C.若粒子速率变为2v0,穿出磁场后一定垂直打到感光板MN上
D.粒子以速度v0从P点以任意方向射入磁场,离开磁场后一定垂直打在感光板MN上
如图所示的狭长区域内有垂直于纸面向里的匀强磁场,区域的左、右两边界均沿竖直方向,磁场左、右两边界之间的距离L,磁场磁感应强度的大小为B.某种质量为m,电荷量q的带正电粒子从左边界上的P点以水平向右的初速度进入磁场区域,该粒子从磁场的右边界飞出,飞出时速度方向与右边界的夹角为30º。重力的影响忽略不计。
(1)求该粒子在磁场中做圆周运动的轨道半径;
(2)求该粒子的运动速率;
(3)求该粒子在磁场中运动的时间;