高中物理

如图所示,一质量为M=5.0kg,长度L=4m的平板车静止在水平地面上,距离平板车右侧S=16.5m处有一固定障碍物.障碍物上固定有一电动机A。另一质量为m=2.0kg可视为质点的滑块,以v0=8m/s的水平初速度从左端滑上平板车,同时电动机A对平板车施加一水平向右、大小为22.5N的恒力F.1s后电动机A突然将功率变为P=52.5w并保持不变,直到平板车碰到障碍物停止运动时,电动机A也同时关闭。滑块沿水平飞离平板车后,恰能无碰撞地沿圆弧切线从B点滑入光滑竖直圆弧轨道,并沿轨道下滑.已知平板车间与滑块的动摩擦因数μ1=0.5,平板车与地面的动摩擦因数μ2=0.25,圆弧半径为R=1.0m,圆弧所对的圆心角∠BOD=θ=1060,g取10m/s2,sin53°=0.8,cos53°=0.6,不计空气阻力,求:

(1)0 1s时间内,滑块相对小车运动的位移x;
(2)电动机A做功W;
(3)滑块运动到圆弧轨道最低点C时对轨道压力的大小FN

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某同学设想驾驶一辆“陆地-太空”两用汽车,沿地球赤道行驶并且汽车相对于地球速度可以增加到足够大。当汽车速度增加到某一值时,它将成为脱离地面绕地球做圆周运动的“航天汽车”。不计空气阻力,已知地球的半径R=6400km。下列说法正确的是

A.汽车在地面上速度增加时,它对地面的压力增大
B.当汽车速度增加到7.9km/s时,将离开地面绕地球做圆周运动
C.此“航天汽车”环绕地球做圆周运动的最小周期为1h
D.在此“航天汽车”上可以用弹簧测力计测量物体的重力
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,一质量为m=2 kg的滑块从半径为R=0.2 m的光滑四分之一圆弧轨道的顶端A处由静止滑下,A点和圆弧对应的圆心O点等高,圆弧的底端B与水平传送带平滑相接.已知传送带匀速运行的速度为v0=4 m/s,B点到传送带右端C点的距离为L=2 m.当滑块滑到传送带的右端C时,其速度恰好与传送带的速度相同.(g=10 m/s2),求:

(1)滑块到达底端B时对轨道的压力;
(2)滑块与传送带间的动摩擦因数μ;
(3)此过程中,由于滑块与传送带之间的摩擦而产生的热量Q.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,半径为r=0.4m的1/4圆形光滑轨道AB固定于竖直平面内,轨道与粗糙的水平地面相切于B点,CDE为固定于竖直平面内的一段内壁光滑的中空方形细管,DE段被弯成以O为圆心、半径R=0.2m的一小段圆弧,管的C端弯成与地面平滑相接,O点位于地面,OE连线竖直.可视为质点的物块b,从A点由静止开始沿轨道下滑,经地面进入细管(b横截面略小于管中空部分的横截面),b滑到E点时受到细管下壁的支持力大小等于所受重力的1/2.已知物块b的质量m = 0.4kg,g取10m/s2

(1)求物块b滑过E点时的速度大小vE
(2)求物块b滑过地面BC过程中克服摩擦力做的功Wf
(3)若将物块b静止放在B点,让另一可视为质点的物块a,从A点由静止开始沿轨道下滑,滑到B点时与b发生弹性正碰,已知a的质量M≥m,求物块b滑过E点后在地面的首次落点到O点的距离范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块从轨道右侧A点以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已知R=0.4m,l=2.5m,v0=6m/s,物块质量m=1kg,与PQ段间的动摩擦因数μ=0.4,轨道其它部分摩擦不计.取g=10m/s2.求:

(1)物块经过圆轨道最高点B时对轨道的压力;
(2)物块从Q运动到P的时间及弹簧获得的最大弹性势能;
(3)物块仍以v0从右侧冲上轨道,调节PQ段的长度l,当l长度是多少时,物块恰能不脱离轨道返回A点继续向右运动.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,光滑绝缘的圆形轨道BCDG位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g.求:

(1)若滑块从水平轨道上距离B点为s=3R的A点由静止释放,求滑块到达与圆心O等高的C点时的速度大小;
(2)在(1)的情况下,求滑块到达C点时对轨道的作用力大小;
(3)改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,竖直平面内固定着这样的装置:倾斜的粗糙细杆底端与光滑的圆轨道相接,细杆和圆轨道相切于B点,细杆的倾角为37°,长为L,半圆轨道半径为R=0.2L。一质量为m的小球(可视为质点)套在细杆上,从细杆顶端A由静止滑下,滑至底端B刚好套在圆轨道上继续运动。球与杆间的动摩擦因数为μ=0.25, cos37°=0.8,sin37°=0.6。求:

(1)小球滑至细杆底端B时的速度大小;
(2)试分析小球能否滑至光滑竖直圆轨道的最高点C。如能,请求出在最高点时小球对轨道的压力;如不能,请说明理由;
(3)若给球以某一初速度从A处下滑,球从圆弧最高点飞出后做平抛运动 ,欲使其打到细杆上与圆心O等高的D点,求球在C处的速度大小及撞到D点时速度与水平方向夹角的正切值。                           

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,半径分别为R和r(R>r)的甲、乙两光滑半圆轨道放置在同一竖直平面内,两轨道之间由一光滑水平轨道CD相连,在水平轨道CD上有一轻弹簧被a、b两个质量均为m的小球夹住,但不拴接。同时释放两小球,弹性势能全部转化为两球的动能,若两球获得相等动能,其中有一只小球恰好能通过最高点,两球离开半圆轨道后均做平抛运动落到水平轨道的同一点(不考虑小球在水平面上的反弹)。则

A.恰好通过最高点的是b球
B.弹簧释放的弹性势能为5mgR
C.a球通过最高点对轨道的压力为mg
D.CD两点之间的距离为
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

过山车是游乐场中常见的设施。下图是一种过山车运行轨道的简易模型,它由竖直平面内粗糙斜面轨道和光滑圆形轨道组成。过山车与斜面轨道间的动摩擦因数为,圆形轨道半径为R,A点是圆形轨道与斜面轨道的切点。过山车(可视为质点)从倾角为的斜面轨道某一点由静止开始释放并顺利通过圆形轨道。若整个过程中,人能承受过山车对他的作用力不超过其自身重力的8倍。求过山车释放点距A点的距离范围。

来源:
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

用一根细线一端系一可视为质点的小球,另一端固定在一光滑锥顶上,如图所示,设小球在水平面内作匀速圆周运动的角速度为ω,线的张力为T,则T随ω2变化的图象是(  )

A. B.
C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,旋转秋千中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上。 不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是(  )

A.A的速度比B的小                    B.A与B的向心加速度大小相等
C.悬挂A、B的缆绳与竖直方向的夹角相等  D.悬挂A的缆绳所受的拉力比悬挂B的小

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,传送带的两个轮子半径均为r=0.2m,两个轮子最高点A、B在同一水平面内,A、B间距离L=5m,半径R=0.4m的固定、竖直光滑圆轨道与传送带相切于B点,C点是圆轨道的最高点。质量m=0.1kg的小滑块与传送带之间的动摩擦因数μ=0.4。重力加速度g=10m/s2。求:

(1)当传送带的轮子以ω=10rad/s的角速度顺时针匀速转动时,将小滑块无初速地放到传送带上的A点,小滑块从A点运动到B点的时间t是多少?
(2)传送带的轮子以不同的角速度匀速转动,将小滑块无初速地放到传送带上的A点,小滑块运动到C点时,对圆轨道的压力大小不同,最大压力Fm是多大?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,竖直放置的半圆形光滑绝缘轨道半径为R,圆心为O,下端与绝缘水平轨道在B点平滑连接.一质量为m、带电量为+q的物块(可视为质点),置于水平轨道上的A点.已知A、B两点间的距离为L,物块与水平轨道间的动摩擦因数为μ,重力加速度为g.

(1)若物块能到达的最高点是半圆形轨道上与圆心O等高的C点,则物块在A点水平向左运动的初速度应为多大?
(2)若整个装置处于方向竖直向上的匀强电场中,物块在A点水平向左运动的初速度vA,沿轨道恰好能运动到最高点D,向右飞出.则匀强电场的场强为多大?
(3)若整个装置处于水平向左的匀强电场中,场强的大小E=.现将物块从A点由静止释放,运动过程中始终不脱离轨道,求物块第2n(n=1、2、3…)次经过B点时的速度大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,水平放置的轻质弹簧左端与竖直墙壁相连,右侧与质量的小物块甲相接触但不粘连,B点为弹簧自由端,光滑水平面AB与倾角的倾斜面BC在B处平滑连接,OCD在同一条竖直线上,CD右端是半径光滑圆弧,斜面BC与圆弧在C处也平滑连接,物块甲与斜面BC间的动摩擦因数。现用力将物块甲缓慢向左压缩弹簧,使弹簧获得一定能量后撤去外力,物块甲刚好能滑到C点,与此同时用长的细线悬挂于O点的小物块乙从图示位置静止释放,,物块乙到达C点时细线恰好断开且与物块甲发生正碰,碰撞后物块甲恰好对圆弧轨道无压力,物块乙恰好从图中P点离开圆弧轨道,取,求:

(1)撤去外力时弹簧的弹性势能
(2)小物块乙的质量M和细线所能承受的最大拉力
(3)两物块碰撞过程中损失的能量
(4)小物块乙落到水平面上时的速度大小(保留一位有效数字)。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

【原创】如图所示,粗糙斜直轨道PA和两个光滑圆弧轨道组成的S形轨道,斜轨道与圆弧轨道在A点光滑连接,B点是最低点,已知,圆弧轨道半径均为R,两圆弧交接处C、D之间留有很小空隙,刚好能够使小球通过,CD之间距离可忽略。斜轨道最高点P与水平面BQ的高度差为h=6.5R。从P点静止释放一个质量为m可视为质点的小球,小球沿S形轨道运动后刚好从G点水平飞出,落到水平地面上Q点。不计空气阻力,重力加速度为g,求:

(1)落点Q点到B点的距离为x?
(2)小球运动到圆形轨道最低点B点时对轨道的压力;
(3)小球与轨道PA间的动摩擦因数μ。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中物理探究向心力大小与半径、角速度、质量的关系试题