如图所示,QB段为一半径为的光滑圆弧轨道,AQ段为一长度为的粗糙水平轨道,两轨道相切于Q点,Q在圆心O的正下方,整个轨道位于同一竖直平面内。物块的质量为m=1kg(可视为质点),P与AQ间的动摩擦因数,若物块以速度v0从A点滑上水平轨道,到C点后又返回A点时恰好静止。(取)求:
(1)v0的大小;
(2)物块P第一次刚通过Q点时对圆弧轨道的压力。
如图所示,圆心角为90°的光滑圆弧形轨道,半径R为1.6 m,其底端切线沿水平方向。长为的斜面,倾角为,其顶端与弧形轨道末端相接,斜面正中间有一竖直放置的直杆,现让质量为1 kg的物块从弧形轨道的顶端由静止开始滑下,物块离开弧形轨道后刚好能从直杆的顶端通过,重力加速度g取10 m/s2,求:
(1)物块滑到弧形轨道底端时对轨道的压力大小;
(2)直杆的长度为多大。
如图所示,将一个小球用细线悬挂起来,让小球在a、b之间来回摆动,c点为小球圆弧轨迹的最低点,则以下说法中正确的是
A.小球做简谐振动的回复力是摆球重力沿圆弧线方向的分力 |
B.小球由c到b的过程,动能减小,重力势能增大 |
C.小球在c点时的重力势能最大, 向心加速度也最大 |
D.在平衡位置时,摆线张力最大,回复力也最大 |
如右图所示,光滑的水平面AB与半径为R="0.32" m的光滑竖直半圆轨道BCD在B点相切,D为轨道最高点.用轻质细线连接甲、乙两小球,中间夹一轻质弹簧,弹簧与甲、乙两球不拴接.甲球的质量为m1="0.1" kg,乙球的质量为m2="0.3" kg,甲、乙两球静止在光滑的水平面上。现固定甲球,烧断细线,乙球离开弹簧后进入半圆轨道恰好能通过D点。重力加速度g取10 m/s2,甲、乙两球可看作质点。
①试求细线烧断前弹簧的弹性势能;
②若甲球不固定,烧断细线,求乙球离开弹簧后进入半圆轨道能达到的最大高度;
【原创】如图所示,粗糙斜直轨道PA和两个光滑圆弧轨道、组成的S形轨道,斜轨道与圆弧轨道在A点光滑连接,B点是最低点,已知,圆弧轨道半径均为R,两圆弧交接处C、D之间留有很小空隙,刚好能够使小球通过,CD之间距离可忽略。斜轨道最高点P与水平面BQ的高度差为h=6.5R。从P点静止释放一个质量为m可视为质点的小球,小球沿S形轨道运动后刚好从G点水平飞出,落到水平地面上Q点。不计空气阻力,重力加速度为g,求:
(1)落点Q点到B点的距离为x?
(2)小球运动到圆形轨道最低点B点时对轨道的压力;
(3)小球与轨道PA间的动摩擦因数μ。
“快乐向前冲”节目,中有这样一种项目,选手需要借助悬挂在高处的绳飞跃到鸿沟对面的平台上,如果已知选手的质量为m,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角为,绳的悬挂点O距平台的竖直高度为H,绳长为L,不考虑空气阻力和绳的质量,下列说法正确的是( )
A.选手摆到最低点时处于失重状态 |
B.选手摆到最低点时所受绳子的拉力为 |
C.选手摆到最低点时所受绳子的拉力大小大于选手对绳子的拉力大小 |
D.选手摆到最低点的运动过程中,其运动可分解为水平方向的匀加速运动和竖直方向上的匀加速运动 |
【改编】下图是某装置的垂直截面图,虚线A1A2是垂直截面与磁场区边界面的交线,匀强磁场分布在A1A2的右侧区域,磁感应强度B=0.4T,方向垂直纸面向外,A1A2与垂直截面上的水平线夹角为45°。A1A2的左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为S1、S2,相距L=0.2m。在薄板上P处开一小孔,P与A1A2线上点D的水平距离为L。在小孔处装一个电子快门。起初快门开启,一旦有带正电微粒通过小孔,快门立即关闭,此后每隔T=3.0×10-3s开启一次并瞬间关闭。从S1S2之间的某一位置水平发射一速度为v0的带正电微粒,它经过磁场区域后入射到P处小孔。通过小孔的微粒与档板发生碰撞而反弹,反弹速度大小是碰前的0.5倍。(忽略微粒所受重力影响,碰撞过程无电荷转移。已知微粒的荷质比。只考虑纸面上带电微粒的运动)求:
(1)满足题目的微粒在磁场中运动的半径的条件?
(2)经过一次反弹直接从小孔射出的微粒,其初速度v0应为多少?
(3)上述(2)问中微粒从最初水平射入磁场的位置到D点的距离d1和第二次离开磁场的位置到D点的距离d2。
内壁光滑的圆锥筒固定不动,其轴线竖直,如图所示,有两个质量相同的小球A和B紧贴内壁分别在图示所在的水平面内做匀速圆周运动,则( )
A.A球线速度必定大于B球的线速度 |
B.A球对筒壁的压力必定大于B球对筒壁的压力 |
C.A球角速度必定大于B球的角速度 |
D.A球的运动周期必定大于B球的运动周期 |
如图所示,轻杆AB长l,两端各连接一个小球(可视为质点),两小球质量关系为,轻杆绕距B端处的O轴在竖直平面内顺时针自由转动。当轻杆转至水平位置时,A球速度为,则在以后的运动过程中
A.A球机械能守恒 |
B.当B球运动至最低点时,球A对杆作用力等于0 |
C.当B球运动到最高点时,杆对B球作用力等于0 |
D.A球从图示位置运动到最低点的过程中,杆对A球做功等于0 |
如图所示,空间区域I、II有匀强电场和匀强磁场,MN、PQ为理想边界,I区域高度为d,II区域的高度足够大,匀强电场方向竖直向上;I、II区域的磁感应强度大小均为B,方向分别垂直纸面向里和向外。一个质量为m、带电荷量为q的小球从磁场上方的O点由静止开始下落,进入场区后,恰能做匀速圆周运动。已知重力加速度为g。
(1)试判断小球的电性并求出电场强度E的大小;
(2)若带电小球运动一定时间后恰能回到O点,求它释放时距MN的高度h;
(3)试讨论在h取不同值时,带电小球第一次穿出I区域的过程中,电场力所做的功。
设想有一宇航员在某未知星球的极地地区着陆时发现,同一物体在该地区的重力是地球上的重力的0.01倍.还发现由于星球的自转,物体在该星球赤道上恰好完全失重,且该星球上一昼夜的时间与地球上相同。则这未知星球的半径是多少?(取地球上的重力加速度 g=9.8 m/s2,π2=9.8,结果保留两位有效数字)
轻杆长L=1.5m,以一端为圆心,在竖直面内做圆周运动,杆另一端固定一个质量m=1.8kg小球,小球通过最高点时速率v=3m/s,求此时小球对杆的作用力大小及方向(g=10m/s2)。
长为L的细线,拴一质量为m的小球,一端固定于O点。让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示。当摆线L与竖直方向的夹角是时,求:
(1)线的拉力F;
(2)小球运动的线速度大小;
如图所示,小物体P放在水平圆盘上随圆盘一起转动,下列关于小物体所受摩擦力f的叙述正确的是( )
A.f的方向总是指向圆心 |
B.圆盘匀速转动时f=0 |
C.在转速一定的条件下,f跟物体到轴O的距离成正比 |
D.在物体与轴O的距离一定的条件下, f跟圆盘转动的角速度成正比 |