如图所示,一半径为R=0.5m的半圆型光滑轨道与水平传送带在B点连接,水平传送带AB长L="8" m,向右匀速运动的速度为v0。一质量为1 kg的小物块(可视为质点)以v1="6" m/s的初速度从传送带右端B点向左冲上传送带,物块再次回到B点后恰好能通过圆形轨道最高点,物块与传送带间的动摩擦因数μ=0.45,g取10 m/s2。求物块相对地面向左运动的最大距离x及传送带的速度大小v0。
如图所示,用长为L的细线一端系住质量为m的小球,另一端固定在A点,AB是过A的竖直线,E为AB上的一点,且AE=0.5L,过E作水平线EF,在EF上可以钉铁钉D,现将细线水平拉直,然后小球由静止释放。不计一切摩擦,不计线与钉子碰撞时的能量损失,求:
(1)若无铁钉D,小球运动到最低点B时细线的拉力TB=?
(2)若钉上铁钉D且线拉力足够大,使小球恰能绕钉子在竖直面内做完整圆周运动,则钉子D 与点E 距离DE=?
(3)钉铁钉D后,若线能承受的最大拉力是9mg,小球能绕钉子在竖直面内做完整圆周运动,ED取值范围是多少?
在直角坐标系y轴右侧有相互垂直的勻强磁场和匀强电场。磁场方向垂直纸面向 里,电场方向沿y轴负方向,场强大小为E。一电荷量为q的带正电的粒子(重力不计)从 坐标原点O沿x轴正方向以某一速度做直线运动,运动到A点时撤去电场,当粒子在磁场中运动到距离原点O最远处P点(图中未标 出)时,撤去磁场,同时加另一匀强电场,其方向沿y轴负方向,最终 粒子垂直于y轴飞出。已知A点坐标为(a,0),p点坐标为。求整个过程中电场力对粒子做的功。
如图所示,半径为R的3/4圆周轨道固定在竖直平面内,O为圆轨道的圆心,D为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC与圆心等高。质量为m的小球从离B点高度为h处的A点由静止开始下落,从B点进入圆轨道,小球能通过圆轨道的最高点,并且在最高点对轨道的额压力不超过3mg。现由物理知识推知,小球下落高度h与圆轨道半径R及小球经过D点时的速度vD之间的关系为。
(1)求高度h应满足的条件;
(2)通过计算说明小球从D点飞出后能否落在水平面BC上,并求落点与B点水平距离的范围。
(12分)如图所示,在距水平地面高为0.4m处,水平固定一根长直光滑杆,杆上P处固定一定滑轮(大小不计),滑轮可绕水平轴无摩擦转动,在P点的右边,杆上套一质量m=3kg的滑块A。半径R=0.3m的光滑半圆形轨道竖直地固定在地面上,其圆心O在P点的正下方,在轨道上套有一质量m=3kg的小球B。用一条不可伸长的柔软细绳,通过定滑轮将两小球连接起来。杆和半圆形轨道在同一竖直面内,滑块和小球均可看作质点,且不计滑轮大小的影响。现给滑块A施加一个水平向右、大小为60N的恒力F,求:
(1)把小球B从地面拉到半圆形轨道顶点C的过程中力F做的功。
(2)小球B运动到C处时所受的向心力的大小。
(3)小球B被拉到离地多高时滑块A与小球B的速度大小相等?
某同学设想驾驶一辆“陆地-太空”两用汽车,沿地球赤道行驶并且汽车相对于地球速度可以增加到足够大。当汽车速度增加到某一值时,它将成为脱离地面绕地球做圆周运动的“航天汽车”。不计空气阻力,已知地球的半径R=6400km。下列说法正确的是
A.汽车在地面上速度增加时,它对地面的压力增大 |
B.当汽车速度增加到7.9km/s时,将离开地面绕地球做圆周运动 |
C.此“航天汽车”环绕地球做圆周运动的最小周期为1h |
D.在此“航天汽车”上可以用弹簧测力计测量物体的重力 |
如图所示,圆心在O点、半径为R的圆弧轨道abc竖直固定在水平桌面上,Oc与Oa的夹角为60°,轨道最低点a与桌面相切.一轻绳两端系着质量为m1和m2的小球(均可视为质点),挂在圆弧轨道边缘c的两边,开始时,m1位于c点,然后从静止释放,设轻绳足够长,不计一切摩擦.则( )
A.在m1由c下滑到a的过程中,两球速度大小始终相等 |
B.m1在由c下滑到a的过程中重力的功率逐渐增大 |
C.若m1恰好能沿圆弧轨道下滑到a点,轻绳对m2的拉力为m2g |
D.若m1恰好能沿圆弧轨道下滑到a点,则m1=2m2 |
分 如图所示,平台上的小球从A点水平抛出,恰能无碰撞地进入光滑的BC斜面,经C点进入光滑平面CD时速率不变,最后进入悬挂在O点并与水平面等高的弧形轻质筐内。已知小球质量为1kg,A、B两点高度差2m,BC斜面高4m,倾角,悬挂弧筐的轻绳长为6m,小球看成质点,轻质筐的重量忽略不计,弧形轻质筐的大小远小于悬线长度,重力加速度为g=10m/s2 ,试求:
(1)B点与抛出点A的水平距离x;
(2)小球运动至C点的速度大小;
(3)小球进入轻质筐后瞬间,小球所受拉力F的大小.
如图所示,旋转秋千中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上。 不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( )
A.A的速度比B的小 B.A与B的向心加速度大小相等
C.悬挂A、B的缆绳与竖直方向的夹角相等 D.悬挂A的缆绳所受的拉力比悬挂B的小
用一根细线一端系一可视为质点的小球,另一端固定在一光滑锥顶上,如图所示,设小球在水平面内作匀速圆周运动的角速度为ω,线的张力为T,则T随ω2变化的图象是( )
A. | B. |
C. | D. |
如图所示,一根跨越一固定水平光滑细杆的轻绳,两端各系一个小球,球Q置于地面,球P被拉到与细杆同一水平的位置。在绳刚被拉直时,球P从静止状态向下摆动,当球P摆到竖直位置时,球Q刚要离开地面,则两球质量之比mQ : mP为:
A.4 | B.3 | C.2 | D.1 |
根据玻尔理论,电子绕氢原子核运动可以看作是仅在库仑引力作用下的匀速圆周运动,已知电子的电荷量为e,质量为m,电子在第1轨道运动的半径为r1,静电力常量为k。
(1)电子绕氢原子核做圆周运动时,可等效为环形电流,试计算电子绕氢原子核在第1轨道上做圆周运动的周期及形成的等效电流的大小;
(2)氢原子在不同的能量状态,对应着电子在不同的轨道上绕核做匀速圆周运动,电子做圆周运动的轨道半径满足rn=n2r1,其中n为量子数,即轨道序号,rn为电子处于第n轨道时的轨道半径。电子在第n轨道运动时氢原子的能量En为电子动能与“电子-原子核”这个系统电势能的总和。理论证明,系统的电势能Ep和电子绕氢原子核做圆周运动的半径r存在关系:Ep=-k(以无穷远为电势能零点)。请根据以上条件完成下面的问题。
①试证明电子在第n轨道运动时氢原子的能量En和电子在第1轨道运动时氢原子的能量E1满足关系式
②假设氢原子甲核外做圆周运动的电子从第2轨道跃迁到第1轨道的过程中所释放的能量,恰好被量子数n=4的氢原子乙吸收并使其电离,即其核外在第4轨道做圆周运动的电子脱离氢原子核的作用范围。不考虑电离前后原子核的动能改变,试求氢原子乙电离后电子的动能。
一滑块经水平轨道AB,进入竖直平面内的四分之一圆弧轨道BC。已知滑块的质量m=0.6kg,在A点的速度vA=8m/s,AB长x=5m,滑块与水平轨道间的动摩擦因数μ=0.15,圆弧轨道的半径R=2m,滑块离开C点后竖直上升h=0.2m,取g=10m/s2。
(不计空气阻力)求:
(1)滑块经过B点时速度的大小;
(2)滑块冲到圆弧轨道最低点B时对轨道的压力;
(3)滑块在圆弧轨道BC段克服摩擦力所做的功。
(8分).如图,一绝缘细圆环半径为r,环面处于水平面内,场强为E的匀强电场与圆环平面平行.环上穿有一电量为+q、质量为m的小球,可沿圆环做无摩擦的圆周运动.若小球经A点时速度的方向恰与电场垂直,且圆环与小球间沿水平方向无力的作用(设地球表面重力加速度为g).则:
(1)小球经过A点时的速度大小vA是多大?
(2)当小球运动到与A点对称的B点时,小球的速度是多大?圆环对小球的作用力大小是多少?
(3)若Eq=mg,小球的最大动能为多少?
如图所示,在直角坐标系平面的第II象限内有半径为的圆分别与x轴、y轴相切于C(,0)、D(0,)两点,圆内存在垂直于平面向外的匀强磁场,磁感应强度B.与轴平行且指向负方向的匀强电场左边界与轴重合,右边界交轴于G点,一带正电的粒子A(重力不计)电荷量为、质量为,以某一速率垂直于轴从C点射入磁场,经磁场偏转恰好从D点进入电场,最后从G点以与轴正向夹角45°的方向射出电场.求:
(1)OG之间距离;
(2)该匀强电场电场强度E;
(3)若另有一个与A的质量和电荷量相同、速率也相同的正粒子,从C点沿与轴负方向成30°角的方向射入磁场,则粒子再次回到轴上某点时,该点坐标值为多少?