如图所示,长为3L的轻杆课绕水平转轴O转动,在杆两端分别固定质量均为m的球A、B(可视为质点),球A距轴O的距离为L。现给系统一定动能,使杆和球在竖直平面内转动。当球B运动到最高点时,水平转轴O对杆的作用力恰好为零,忽略空气阻力。已知重力加速度为g,则球B在最高点时,下列说法正确的是
A.球B的速度为0 B.杆对球B的弹力为0
C.球B的速度为 D.球A的速度等于
如图所示,在竖直平面的xoy坐标系内,一根长为l的不可伸长的细绳,一端固定在拉力传感器A上,另一端系一质量为m的小球.x轴上的P点固定一个表面光滑的小钉,P点与传感器A相距.现拉小球使细绳绷直并处在水平位置,然后由静止释放小球,当细绳碰到钉子后,小球可以绕钉子在竖直平面内做圆周运动.已知重力加速度大小为g,求:
(1)若小球经过最低点时拉力传感器的示数为7mg,求此时小球的速度大小;
(2)传感器A与坐标原点O之间的距离;
(3)若小球经过最低点时绳子恰好断开,请确定小球经过y轴的位置.
如图所示,竖直平面内四分之一光滑圆弧轨道AP和水平传送带PC相切于P点,圆弧轨道的圆心为O,半径为R=5m,一质量为m=2kg的小物块从圆弧顶点由静止开始沿轨道下滑,再滑上传送带PC,传送带可以速度v=5m/s沿顺时针或逆时针方向的传动.小物块与传送带间的动摩擦因数为μ=0.5,不计物体经过圆弧轨道与传送带连接处P时的机械能损失,重力加速度为g=10m/s2.
(1)求小物体滑到P点时对圆弧轨道的压力;
(2)若传送带沿逆时针方向传动,物块恰能滑到右端C,问传送带PC之间的距离L为多大.
“飞车走壁”是一种传统的杂技艺术,演员骑车在倾角很大的桶面上做圆周运动而不掉下来.如图所示,已知桶壁的倾角为θ,车和人的总质量为m,做圆周运动的半径为r,若使演员骑车做圆周运动时不受桶壁的摩擦力,下列说法正确的是( )
A.人和车的速度为 | B.人和车的速度为 |
C.桶面对车的弹力为 | D.桶面对车的弹力为 |
竖直放置的固定绝缘光滑轨道由半径分别为R的圆弧MN和半径为的半圆弧NP拼接而成(两端圆弧相切于N点),小球带正电,质量为,电荷量为,已知将小球由M点静止释放后,它刚好能通过P点,不计空气阻力,下列说法正确的是( )
A.若加竖直向上的匀强电场E(),则小球能通过P点 |
B.若加竖直向下的匀强电场,则小球不能通过P点 |
C.若加垂直纸面向里的匀强磁场,则小球不能通过P点 |
D.若加垂直纸面向外的匀强磁场,则小球不能通过P点 |
一转动装置如图甲所示,两根足够长轻杆OA、OB固定在竖直轻质转轴上的O点,两轻杆与转轴间夹角均为30°,小球a、b分别套在两杆上,小环c套在转轴上,球与环质量均为m,c与a、b间均用长为L的细线相连,原长为L的轻质弹簧套在转轴上,且与轴上P点、环c相连。当装置以某一转速转动时,弹簧伸长到,环c静止在O处,此时弹簧弹力等于环的重力,球、环间的细线刚好拉直而无张力。弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g。求:
(1)细线刚好拉直而无张力时,装置转动的角速度ω1
(2)如图乙所示,该装置以角速度ω2(未知)匀速转动时,弹簧长为L/2,求此时杆对小球的弹力大小;
(3)该装置转动的角速度由ω1缓慢变化到ω2,求该过程外界对转动装置做的功。
如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5m处有一质量为1kg小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10m/s2.则ω的最大值为ωm及ω为最大值时小物体运动到最高点所受的摩擦力为f,则下列选项正确的是 ( )
A.ωm= 1.0rad/s | B.ωm=0.5rad/s |
C.f=2.5N,方向斜向上 | D.f=2N,方向斜向下 |
如图,竖直环A半径为r,固定在木板B上,木板B放在水平地面上,B的左右两侧各有一档板固定在地上,B不能左右运动,在环的最低点静放有一小球C,A、B、C的质量均为m.给小球一水平向右的瞬时速度V,小球会在环内侧做圆周运动,为保证小球能通过环的最高点,且不会使环在竖直方向上跳起,(不计小球与环的摩擦阻力),最低点瞬时速度必须满足( )
A.最小值 B.最大值 C.最小值 D.最大值
赤道上随地球自转的物体A,赤道上空的近地卫星B,地球的同步卫星C,它们的运动都可以视为匀速圆周运动.分别用a、v、T、ω表示物体的向心加速度、速度、周期和角速度,下列判断正确的是( )
A.aA>aB>aC | B.vB>vC>vA | C.TA>TB>TC | D.ωA>ωC>ωB |
“嫦娥三号”探测器环绕月球运行的轨道半径为r,如果轨道半径r变大,下列说法中正确的是( )
A.线速度变小 | B.角速度变大 |
C.向心加速度变大 | D.周期变小 |
如图所示,光滑半圆弧轨道半径为r,OA为水平半径,BC为竖直直径。一质量为m 的小物块自A处以某一竖直向下的初速度滑下,进入与C点相切的粗糙水平滑道CM上。在水平滑道上有一轻弹簧,其一端固定在竖直墙上,另一端恰位于滑道的末端C点(此时弹簧处于自然状态)。若物块运动过程中弹簧最大弹性势能为Ep,且物块被弹簧反弹后恰能通过B点。已知物块与水平滑道间的动摩擦因数为μ,重力加速度为g,求:
(1)物块被弹簧反弹后恰能通过B点时的速度大小;
(2)物块离开弹簧刚进入半圆轨道c点时对轨道的压力FN的大小;
(3)物块从A处开始下滑时的初速度大小v0。
如图所示,已知半径分别为R和r的甲、乙两个光滑的圆形轨道安置在同一竖直平面内,甲轨道左侧又连接一个光滑的轨道,两圆形轨道之间由一条水平轨道CD相连.一小球自某一高度由静止滑下,先滑过甲轨道,通过动摩擦因数为μ的CD段,又滑过乙轨道,最后离开.若小球在两圆轨道的最高点对轨道压力都恰好为零.试求:
⑴释放小球的高度h.
⑵水平CD段的长度.
某兴趣小组设计了一个滚筒式炒栗子机器,滚筒内表面粗糙,内直径为D。工作时滚筒绕固定的水平中心轴转动。为使栗子受热均匀,要求栗子到达滚筒最高处前与筒壁脱离,则
A.滚筒的角速度应满足
B.滚筒的角速度应满足
C.栗子脱离滚筒的位置与其质量有关
D.若栗子到达最高点时脱离滚筒,栗子将自由下落
如图所示为在空中某一水平面内做匀速圆周运动的圆锥摆,关于摆球A的受力情况,下列说法中正确的是( )。
A.摆球A受重力、拉力和向心力的作用 |
B.摆球A受拉力和向心力的作用 |
C.摆球A受拉力和重力的作用 |
D.摆球A受重力和向心力的作用 |