如图所示,一个横截面积S=10cm2的容器中,有一个用弹簧和底部相连的活塞,活塞质量不计,当温度为27℃时,内外压强都为p=1×105Pa,活塞和底面相距L=20cm。在活塞上放质量m=20kg的物体,活塞静止时下降10cm,温度仍为27℃,不计活塞与容器壁的摩擦,g=10m/s2。求:
i.弹簧的劲度系数k;
ii.如果把活塞内气体加热到57℃,为保持活塞静止时位置仍下降10cm,活塞上应冉加物体的质量为多少。
如图所示,ABCD竖直放置的光滑绝缘细管道,其中AB部分是半径为R的圆弧形管道,BCD部分是固定的水平管道,两部分管道恰好相切于B。水平面内的M、N、B三点连线构成边长为L等边三角形,MN连线过C点且垂直于BCD。两个带等量异种电荷的点电荷分别固定在M、N两点,电荷量分别为和。现把质量为、电荷量为的小球(小球直径略小于管道内径,小球可视为点电荷),由管道的A处静止释放,已知静电力常量为,重力加速度为。求:
(1)小球运动到B处时受到电场力的大小;
(2)小球运动到C处时的速度大小;
(3)小球运动到圆弧最低点B处时,小球对管道压力的大小。
某同学利用玩具电动车模拟腾跃运动。如图所示,AB是水平地面,长度为L=6m,BCDE是一段曲面,且在B点处平滑连接。玩具电动车的功率始终为P=10W,从A点由静止出发,到达离地面h=1.8m的E点水平飞出,落地点与E点的水平距离x=2.4m。玩具电动车可视为质点,总质量为m=1kg,重力加速度g取10m/s2,不计空气阻力。求:
(1)玩具电动车过E点时的速度;
(2)若玩具电动车在AB段所受的阻力Ff恒为2N,从B点到E点的过程中,克服摩擦阻力做功10J,则从A点至E点过程所需要的时间是多少?
粗糙水平轨道AB与竖直平面内的光滑圆弧轨道BC相切于B点,一物块(可看成为质点)在水平向右的恒力F作用下自水平轨道的P点处由静止开始匀加速运动到B,此时撤去该力,物块滑上圆弧轨道,在圆弧轨道上运动一段时间后,回到水平轨道,恰好返回到P点停止运动,已知物块在圆弧轨道上运动时对轨道的压力最大值为F1=2.02N,最小值为F2=1.99N,当地重力加速度为g=10m/s2.
(1)求物块的质量m的大小;
(2)若已知圆弧轨道的半径为R=8m,P点到B点的距离是x=0.5m,求F的大小.
如图,水平轨道AB与竖直固定圆轨道相切于B点,C为圆轨道最高点,圆轨道半径R=5m.一质量m=60kg的志愿者,驾驶质量M=940kg、额定功率P=40kW的汽 车体验通过圆轨道时所受底座的作用力,汽车从A点由静止以加速度a=2m/s2做匀 加速运动,到达B点时,志愿者调节汽车牵引力,使汽车匀速率通过圆轨道又回到B点,志愿者在C点时所受底座的支持力等于志愿者的重力,已知汽车在水平轨道及圆轨道上的阻力均为汽车对轨道压力的0.1倍,取g=10m/s2,计算中将汽车视为质点。
求:
(1)汽车在C点的速率;
(2)汽车在C点的牵引功率;
(3)AB间的距离及汽车从A点经圆轨道又回到B点的过程所用的时间。
如图,在光滑的倾角为θ的固定斜面上放一个劈形的物体A,其上表面水平,质量为M.物体B质量为m,B放在A的上面,先用手固定住A.
(1)若A的上表面粗糙,放手后,求AB相对静止一起沿斜面下滑,B对A的压力大小.
(2)若A的上表面光滑,求放手后的瞬间,B对A的压力大小.
“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的电势为 ,内圆弧面CD的电势为,足够长的收集板MN平行边界ACDB,ACDB与MN板的距离为L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB的粒子再次返回。
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有能打到MN板上,求所加磁感应强度的大小;
(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ与MN间运动的时间。
如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块从轨道右侧A点以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已知R=0.4m,l=2.5m,v0=6m/s,物块质量m=1kg,与PQ段间的动摩擦因数μ=0.4,轨道其它部分摩擦不计.取g=10m/s2.求:
(1)物块经过圆轨道最高点B时对轨道的压力;
(2)物块从Q运动到P的时间及弹簧获得的最大弹性势能;
(3)物块仍以v0从右侧冲上轨道,调节PQ段的长度l,当l长度是多少时,物块恰能不脱离轨道返回A点继续向右运动.
如图所示,光滑水平面上,轻弹簧两端分别拴住质量均为m的小物块A和B,B物块靠着竖直墙壁。今用水平外力缓慢推A,使A、B间弹簧压缩,当压缩到弹簧的弹性势能为E时撤去此水平外力,让A和B在水平面上运动。求:
①当弹簧达到最大长度时A、B的速度大小;
②当B离开墙壁以后的运动过程中,弹簧弹性势能的最大值。
一转动装置如图甲所示,两根足够长轻杆OA、OB固定在竖直轻质转轴上的O点,两轻杆与转轴间夹角均为30°,小球a、b分别套在两杆上,小环c套在转轴上,球与环质量均为m,c与a、b间均用长为L的细线相连,原长为L的轻质弹簧套在转轴上,且与轴上P点、环c相连。当装置以某一转速转动时,弹簧伸长到,环c静止在O处,此时弹簧弹力等于环的重力,球、环间的细线刚好拉直而无张力。弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g。求:
(1)细线刚好拉直而无张力时,装置转动的角速度ω1
(2)如图乙所示,该装置以角速度ω2(未知)匀速转动时,弹簧长为L/2,求此时杆对小球的弹力大小;
(3)该装置转动的角速度由ω1缓慢变化到ω2,求该过程外界对转动装置做的功。
如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m.在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C.现有一电荷量q=+1.0×10﹣4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点.取g=10m/s2.试求:
(1)带电体在圆形轨道C点的速度大小.
(2)D点到B点的距离xDB.
(3)带电体运动到圆形轨道B点时对圆形轨道的压力大小.
(4)带电体在从P开始运动到落至D点的过程中的最大动能.
如图所示,在光滑绝缘的水平面上,放置两块直径为2L的同心半圆形金属板A、B,两板间的距离很近,半圆形金属板A、B的左边有水平向右的匀强电场E1,半圆形金属板A、B之间存在电场,两板间的电场强度E2可认为大小处处相等,方向都指向O,现从正对A、B板间隙、到两板的一端距离为d处静止释放一个质量为m、电荷量为q的带正电微粒(不计重力),此微粒恰能在两板间运动且不与板发生相互作用.
(1)求半圆形金属板A、B之间电场强度的E2的大小?
(2)从释放微粒开始,经过多长时间微粒的水平位移最大?
一个重30N的物体置于斜面上,如图,斜面的倾斜角为30°,挡板竖直,不计一切摩擦.(取g=10m/s2)
(1)画出小球受力分析示意图.
(2)求出斜面和挡板对小球的作用力.
如图所示,质量M=kg的木块套在水平杆上,并用轻绳将木块与质量m=kg的小球相连悬在空中。今用跟水平方向成α=30°角的力F=N拉着球带动木块一起向右匀速运动,运动中M、m相对位置保持不变,取g=10m/s2。求:
(1)运动过程中轻绳与水平方向夹角θ;
(2)木块与水平杆间的动摩擦因数为μ.
如图所示,固定的光滑平台左端固定有一光滑的半圆轨道,轨道半径为R,平台上静止放着两个滑块A、B,其质量mA=m,mB =2m,两滑块间夹有少量炸药.平台右侧有一小车,静止在光滑的水平地面上,小车质量M=3m,车长L=2R,车面与平台的台面等高,车面粗糙,动摩擦因数μ=0.2,右侧地面上有一立桩,立桩与小车右端的距离为S,S在0<S<2R的范围内取值,当小车运动到立桩处立即被牢固粘连。点燃炸药后,滑块A恰好能够通过半圆轨道的最高点D,滑块B冲上小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个滑块的速度方向在同一水平直线上,重力加速度为g=10m/s2.求:
(1)滑块A在半圆轨道最低点C受到轨道的支持力FN。
(2)炸药爆炸后滑块B的速度大小vB。
(3)请讨论滑块B从滑上小车在小车上运动的过程中,克服摩擦力做的功Wf与S的关系。