如图所示,相距为L的两条足够长光滑平行金属导轨固定在水平面上,导轨由两种材料组成。PG右侧部分单位长度电阻为r0,且PQ=QH=GH=L。PG左侧导轨与导体棒电阻均不计。整个导轨处于匀强磁场中,磁场方向垂直于导轨平面向下,磁感应强度为B。质量为m的导体棒AC在恒力F作用下从静止开始运动,在到达PG之前导体棒AC已经匀速。
(1)求当导体棒匀速运动时回路中的电流;
(2)若导体棒运动到PQ中点时速度大小为v1,试计算此时导体棒加速度;
(3)若导体棒初始位置与PG相距为d,运动到QH位置时速度大小为v2,试计算整个过程回路中产生的焦耳热。
如图所示,在匀强磁场中有一倾斜的平行金属导轨。导轨间距为L,长为3d,导轨平面与水平面的夹角为,在导轨的中部刷有一段长为d的薄绝缘涂层。匀强磁场的磁感应强度大小为B,方向与导轨平面垂直。质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端。导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g。求:
(1)导体棒与涂层间的动摩擦因数;
(2)导体棒匀速运动的速度大小v;
(3)整个运动过程中,电阻产生的焦耳热Q。
如图所示,足够长的光滑平行金属导轨MN、PQ倾斜放置,两导轨间距离为L,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m的金属棒ab垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab的电阻,重力加速度为g。若在导轨的M、P两端连接阻值R的电阻,将金属棒ab由静止释放,则在下滑的过程中,金属棒ab沿导轨下滑的稳定速度为v,若在导轨 M、P两端将电阻R改接成电容为C的电容器,仍将金属棒ab由静止释放,金属棒ab下滑时间t,此过程中电容器没有被击穿,求:
(1)匀强磁场的磁感应强度的大小为多少?
(2)金属棒ab下滑ts末的速度?
如图甲所示,固定于水平面上的两根互相平行且足够长的金属导轨,处在方向竖直向下的匀强磁场中。两导轨间距离l= 0.5m,两轨道的左端之间接有一个R=0.5W的电阻。导轨上垂直放置一根质量m=0.5kg的金属杆。金属杆与导轨的电阻忽略不计。将与导轨平行的恒定拉力F作用在金属杆上,使杆从静止开始运动,杆最终将做匀速运动。当改变拉力的大小时,相对应的匀速运动速度v也会变化,v与F的关系如图乙所示。取重力加速度g=10m/s2,金属杆与导轨间的最大静摩擦力与滑动摩擦力相等,金属杆始终与轨道垂直且它们之间保持良好接触。
(1)金属杆在匀速运动之前做什么运动?
(2)求磁感应强度B的大小,以及金属杆与导轨间的动摩擦因数μ 。
两足够长的平行金属导轨间的距离为L,导轨光滑且电阻不计,导轨所在的平面与水平面夹角为θ.在导轨所在平面内,分布磁感应强度为B、方向垂直于导轨所在平面的匀强磁场.把一个质量为m的导体棒ab放在金属导轨上,在外力作用下保持静止,导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触的两点间的电阻为R1.完成下列问题:
(1) 如图甲,金属导轨的一端接一个内阻为r的直流电源。撤去外力后导体棒仍能静止.求直流电源电动势;
(2) 如图乙,金属导轨的一端接一个阻值为R2的定值电阻,撤去外力让导体棒由静止开始下滑.在加速下滑的过程中,当导体棒的速度达到v时,求此时导体棒的加速度;
(3) 求(2)问中导体棒所能达到的最大速度。
两根足够长的光滑平行直导轨MN、PQ与水平面成角放置,两导轨间距为L,M、P两点间接有阻值为R的电阻,一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面向上,导轨和金属杆接触良好,它们的电阻不计,现让ab杆由静止开始沿导轨下滑。
(1)求ab杆下滑的最大速度;
(2)ab杆由静止释放至达到最大速度的过程中,电阻R产生的焦耳热为Q,求该过程中ab杆下滑的距离x
如图所示,两金属杆AB和CD长均为L,电阻均为R,质量分别为3m和m。用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧。在金属杆AB下方有高度为H的匀强磁场,磁感应强度大小为B,方向与回路平面垂直,此时,CD处于磁场中。现从静止开始释放金属杆AB,经过一段时间,AB即将进入磁场的上边界时,其加速度为零,此时金属杆CD尚未离开磁场,这一过程中杆AB产生的焦耳热为Q。则
(1)AB棒刚达到磁场边界时的速度v1多大?
(2)此过程中金属杆CD移动的距离h和通过导线截面的电量q分别是多少?
(3)通过计算说明金属杆AB在磁场中可能具有的速度大小v2在什么范围内;
(4)试分析金属杆AB在穿过整个磁场区域过程中可能出现的运动情况(加速度与速度的变化情况)。
如图所示,倾角为的光滑斜面固定在水平面上,水平虚线L下方有垂直于斜面向下的匀强磁场,磁感应强度为B.正方形闭合金属线框边长为h,质量为m,电阻为R,放置于L上方一定距离处,保持线框底边ab与L平行并由静止释放,当ab边到达L时,线框速度为. ab边到达L下方距离d处时,线框速度也为,以下说法正确的是
A. ab边刚进入磁场时,电流方向为a→b
B.ab边刚进入磁场时,线框加速度沿斜面向下
C.线框进入磁场过程中的最小速度小于
D.线框进入磁场过程中产生的热量为mgdsin
如图,水平面内有一光滑金属导轨,其、边的电阻不计,边的电阻阻值,与的夹角为,与垂直,边长度小于。将质量,电阻不计的足够长直导体棒搁在导轨上,并与平行。棒与、交点、间的距离.空间存在垂直于导轨平面的匀强磁场,磁感应强度。在外力作用下,棒由处以一定的初速度向左做直线运动,运动时回路中的电流强度始终与初始时的电流强度相等。
(1)若初速度,求棒在处所受的安培力大小。
(2)若初速度,求棒向左移动距离2m到达EF所需时间。
(3)在棒由处向左移动到达处的过程中,外力做功,求初速度。
某电子天平原理如图所示,形磁铁的两侧为极,中心为极,两级间的磁感应强度大小均为,磁极的宽度均为的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后外电路对线圈供电,秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流可确定重物的质量.已知线圈的匝数为,线圈的电阻为,重力加速度为。问:
(1)线圈向下运动过程中,线圈中感应电流是从端还是端流出?
(2)供电电流是从端还是端流入?求重物质量与电流的关系.
(3)若线圈消耗的最大功率为,该电子天平能称量的最大质量是多少
如图1所示,匀强磁场的磁感应强度为0.5.其方向垂直于倾角为30°的斜面向上。绝缘斜面上固定有形状的光滑金属导轨(电阻忽略不计),和长度均为2.5,连线水平,长为3。以中点为原点、为轴建立一维坐标系。一根粗细均匀的金属杆,长度为3、质量为1、电阻为0.3,在拉力的作用下,从处以恒定的速度=1,在导轨上沿轴正向运动(金属杆与导轨接触良好)。g取102。
(1)求金属杆运动过程中产生产生的感应电动势及运动到处电势差;
(2)推导金属杆从处运动到点过程中拉力与位置坐标的关系式,并在图2中画出关系图象;
(3)求金属杆从处运动到点的全过程产生的焦耳热。
如图所示,倾角分别为37°和53°的两足够长绝缘斜面上端以光滑小圆弧平滑对接,左侧斜面光滑,斜面某处存在着矩形匀强磁场区域MNQP,磁场方向垂直于斜面向上,MN平行于斜面底边,。ab与PQ相距0.5m。一不可伸长的绝缘细轻绳跨过斜面顶端,一端连接着可视为质点的带正电薄板,一端连接在单匝正方形金属线框abcd的ab边中点,ab //MN,细绳平行于斜面侧边,线框与薄板均静止在斜面上,ab与PQ相距0.5m。已知薄板电荷量q=1×10–4 C,薄板与线框的质量均为m=0.5kg,薄板与右侧斜面间的动摩擦因数μ=0.3,线框电阻R=1Ω,线框边长0.5m。(g="10" m/s2,sin37°=0.6,斜面固定,不计绳与斜面的摩擦)
(1)求薄板静止时受到的摩擦力。
(2)现在右侧斜面上方加一场强大小E= 9×103 N/C,方向沿斜面向下的匀强电场,使薄板沿斜面向下运动,线框恰能做匀速运动通过磁场;在线框的cd边刚好离开磁场时,将电场方向即刻变为垂直于右侧斜面向下(场强大小不变),线框与薄板做减速运动最后停在各自的斜面上。求磁感应强度大小B和cd边最终与MN的距离x。
如图所示,倾角(=30(、宽为L=1m的足够长的U形光 滑金属框固定在磁感应 强度B=1T、范围足够大的匀强磁场中磁场方向垂直导轨平面斜向上,现用一平行于导轨的牵引力F,牵引一根质量为m=0.2 kg,电阻R=1 (的金属棒ab,由静止开始沿导轨向上移 动。(金属棒ab始终与导轨接触良好且垂直,不计 导轨电阻及一切摩擦)问:
(1)若牵引力是恒力,大小F="9" N,则金属棒达到的稳定速度v1多大?
(2)若金属棒受到向上的拉力在斜面导轨上达到某一速度时,突然撤去拉力,从撤去拉力到棒的速度为零时止,通过金属棒的电量为q="0.48" C,金属棒发热为Q="1.12" J,则撤力时棒的速度v2多大?
如图(a)所示,斜面倾角为370,一宽为l=0.43m的有界匀强磁场垂直于斜面向上,磁场边界与斜面底边平行.在斜面上由静止释放一正方形金属线框,线框沿斜面下滑,下边与磁场边界保持平行.取斜面底边重力势能为零,从线框开始运动到恰好完全进入磁场的过程中,线框的机械能E和位移s之间的关系如图(b)所示,图中①、②均为直线段.已知线框的质量为m=0.1kg,电阻为R=0.06Ω,重力加速度取g=l0m/s2.求:
(1)金属线框与斜面间的动摩擦因数;
(2)金属线框刚进入磁场到恰完全进入磁场所用的时间;
(3)金属线框穿越磁场的过程中,线框中产生的最大电功率;
相距L=1.5m的足够长金属导轨竖直放置,质量为m1=1.0kg的金属棒ab和质量为m2=0.27kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,确保金属棒与金属导轨良好接触,如图(a)所示。虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同。ab棒光滑,cd棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为R=1.8Ω,导轨电阻不计。现有一方向竖直向下、大小按图(b)所示规律变化的外力F作用在ab棒上,使棒从静止开始沿导轨匀加速运动,与此同时cd棒也由静止释放。取重力加速度g=10m/s2。求:
(1)磁感应强度B的大小和ab棒的加速度大小;
(2)若在2s内外力F做功40J,则这一过程中两金属棒产生的总焦耳热是多少?
(3)判断cd棒将做怎样的运动,并求出cd棒达到最大速度所需的时间t0。