(18分)
如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接.轨道宽度均为L=1m,电阻忽略不计.匀强磁场I仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T;匀强磁场II仅分布在倾斜轨道平面所在区域,方向垂直于倾斜轨道平面向下,大小B2=1T.现将两质量均为m=0.2kg,电阻均为R=0.5Ω的相同导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s2.
(1)求导体棒cd沿斜轨道下滑的最大速度的大小;
(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;
(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开始运动的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0=1T,试求cd棒在倾斜轨道上下滑的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.
洋流又叫海流,指大洋表层海水常年大规模的沿一定方向较为稳定的流动。因为海水中含有大量的正、负离子,这些离子随海流做定向运动,如果有足够强的磁场能使海流中的正、负离子发生偏转,便可用来发电。图为利用海流发电的磁流体发电机原理示意图,其中的发电管道是长为L、宽为d、高为h的矩形水平管道。发电管道的上、下两面是绝缘板,南、北两侧面M、N是电阻可忽略的导体板。两导体板与开关S和定值电阻R相连。整个管道置于方向竖直向上、磁感应强度大小为B的匀强磁场中。为了简化问题,可以认为:开关闭合前后,海水在发电管道内以恒定速率v朝正东方向流动,发电管道相当于电源,M、N两端相当于电源的正、负极,发电管道内海水的电阻为r(可视为电源内阻)。管道内海水所受的摩擦阻力保持不变,大小为f。不计地磁场的影响。
(1)判断M、N两端哪端是电源的正极,并求出此发电装置产生的电动势;
(2)要保证发电管道中的海水以恒定的速度流动,发电管道进、出口两端要保持一定的压力差。请推导当开关闭合后,发电管两端压力差F与发电管道中海水的流速v之间的关系;
(3)发电管道进、出口两端压力差F的功率可视为该发电机的输入功率,定值电阻R消耗的电功率与输入功率的比值可定义为该发电机的效率。求开关闭合后,该发电机的效率η;在发电管道形状确定、海水的电阻r、外电阻R和管道内海水所受的摩擦阻力f保持不变的情况下,要提高该发电机的效率,简述可采取的措施。
如图所示,两平行金属导轨轨道MN、MʹNʹ间距为L,其中MO和MʹOʹ段与金属杆间的动摩擦因数μ=0.4,ON和OʹNʹ段光滑且足够长,两轨道的交接处由很小的圆弧平滑连接,导轨电阻不计,左侧接一阻值为R的电阻和电流传感器,轨道平面与水平面的夹角分别为α=53°和β=37°。区域PQPʹQʹ内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为d,PPʹ的高度为h2=0.3m,。现开启电流传感器,同时让质量为m、电阻为r的金属杆ab自高h1=1.5m处由静止释放,金属杆与导轨垂直且保持接触良好,电流传感器测得初始一段时间内的I t(电流与时间关系)图象如图乙所示(图中I0为已知)。求:
(1)金属杆第一次进入磁场区域时的速度大小v1(重力加速度为g取10m/s2);
(2)匀强磁场的磁感应强度B和金属杆第二次进入磁场区域时的速度大小(此后重力加速度取g);
(3)电阻R在t1 t3时间内产生的总热能QR(用v1和其它已知条件表示)。
如图所示,光滑的定滑轮上绕有轻质柔软细线,线的一端系一质量为m=0.1kg、电阻为r=1Ω的金属杆,另一端施加竖直向下F=3N的拉力。在竖直平面内有间距为L=0.5m的足够长的平行金属导轨PQ、EF,在QF之间连接有阻值为R=3Ω的电阻,其余电阻不计,磁感应强度为B0=2T的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF处,在拉力F的作用下从静止运动,当金属杆上升h=2m高度恰好达到稳定速度而匀速上升。运动过程中金属杆始终与导轨垂直且接触良好(忽略所有摩擦,重力加速度为g)。求:
(1)金属杆匀速上升的速度v及金属杆从静止到上升h=2m的过程中,电阻R中产生的焦耳热QR;
(2)若将金属杆上升h=2m时的时刻记作t=0,速度记为v0,从此时刻起,磁感应强度逐渐减小,若此后金属杆中恰好不产生感应电流,则磁感应强度B怎样随时间t变化(写出B与t的关系式)。
(18分)如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接.轨道宽度均为L=1m,电阻忽略不计.匀强磁场I仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T;匀强磁场II仅分布在倾斜轨道平面所在区域,方向垂直于倾斜轨道平面向下,大小B2=1T.现将两质量均为m=0.2kg,电阻均为R=0.5Ω的相同导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s2.
(1)求导体棒cd沿斜轨道下滑的最大速度的大小;
(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;
(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开始运动的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0=1T,试求cd棒在倾斜轨道上下滑的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.
如图所示,两根足够长的平行金属导轨固定在倾角=300的斜面上,导轨电阻不计,间距L=0.4m。导轨所在空间被分成区域I和Ⅱ,两区域的边界与斜面的交线为MN,I中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁场感应度大小均为B=0.5T,在区域I中,将质量m1=0.1kg,电阻R1=0.1的金属条ab放在导轨上,ab刚好不下滑。然后,在区域Ⅱ中将质量m2=0.4kg,电阻R2=0.1的光滑导体棒cd置于导轨上,由静止开始下滑,cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与轨道垂直且两端与轨道保持良好接触,取g=10m/s2,问
(1)cd下滑的过程中,ab中的电流方向;
(2)ab将要向上滑动时,cd的速度v多大;
(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8m,此过程中ab上产生的热量Q是多少。
如图所示,水平放置的三条光滑平行金属导轨a,b,c,相距均为d=1m,导轨ac间横跨一质量为m=1kg的金属棒MN,棒与导轨始终良好接触.棒的电阻r=2Ω,导轨的电阻忽略不计.在导轨bc间接一电阻为R=2Ω的灯泡,导轨ac间接一理想伏特表.整个装置放在磁感应强度B=2T匀强磁场中,磁场方向垂直导轨平面向下.现对棒MN施加一水平向右的拉力F,使棒从静止开始运动,试求:
(1)若施加的水平恒力F=8N,则金属棒达到稳定时速度为多少?
(2)若施加的水平外力功率恒定,棒达到稳定时速度为1.5m/s,则此时电压表的读数为多少?
(3)若施加的水平外力功率恒为P=20W,经历t=1s时间,棒的速度达到2m/s,则此过程中灯泡产生的热量是多少?
如图所示,电阻不计的两光滑平行金属导轨相距L=1m,PM、QN部分水平放置在绝缘桌面上,半径a=0.9m的光滑金属半圆导轨处在竖直平面内,且分别在M、N处平滑相切, PQ左端与R=2Ω的电阻连接.一质量为m=1kg、电阻r=1Ω的金属棒放在导轨上的PQ处并与两导轨始终垂直.整个装置处于磁感应强度大小B=1T、方向竖直向上的匀强磁场中,g取10m/s2.求:
(1)若金属棒以v=3m/s速度在水平轨道上向右匀速运动,求该过程中棒受到的安培力大小;
(2)若金属棒恰好能通过轨道最高点CD处,求棒通过CD处时棒两端的电压;
(3)设LPM=LQN=3m,若金属棒从PQ处以3m/s匀速率沿着轨道运动,且棒沿半圆轨道部分运动时,回路中产生随时间按余弦规律变化的感应电流,求棒从PQ运动到CD的过程中,电路中产生的焦耳热.
如图所示,无限长金属导轨EF、PQ固定在倾角为θ=53°的光滑绝缘斜面上,轨道间距L="1" m,底部接入一阻值为R=0.4Ω的定值电阻,上端开口。垂直斜面向上的匀强磁场的磁感应强度B=2T。一质量为m=0.5kg的金属棒ab与导轨接触良好,ab与导轨间动摩擦因数μ=0.2,ab连入导轨间的电阻r=0.1Ω,电路中其余电阻不计。现用一质量为M=2.86kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连。由静止释放M,当M下落高度h="2.0" m时,ab开始匀速运动(运动中ab始终垂直导轨,并接触良好)。不计空气阻力,sin53°=0.8,cos53°=0.6,取g=10m/s2。求:
(1)ab棒沿斜面向上运动的最大速度vm;
(2)ab棒从开始运动到匀速运动的这段时间内电阻R上产生的焦耳热QR和流过电阻R的总电荷量q。
如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角θ=30°,导轨电阻不计。磁感应强度为B=2T的匀强磁场垂直导轨平面向上,长为L=0.5m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨电接触良好,金属棒ab的质量m=1kg、电阻r=1Ω。两金属导轨的上端连接右端电路,灯泡电阻RL=4Ω,定值电阻R1=2Ω,电阻箱电阻R2=12Ω,重力加速度为g="10" m/s2,现闭合开关,将金属棒由静止释放,下滑距离为s0=50m时速度恰达到最大,试求:
(1)金属棒下滑的最大速度vm;
(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q。
(12分)如图所示,光滑绝缘水平面上方有两个方向相反的水平方向匀强磁场,竖直虚线为其边界,磁场范围足够大,磁感应强度的大小分别为.竖直放置的正方形金属线框边长为、电阻为R、质量为m.线框通过一绝缘细线与套在光滑竖直杆上的质量为M的物块相连,滑轮左侧细线水平。开始时,线框与物块静止在图中虚线位置且细线水平伸直。将物块由图中虚线位置由静止释放,当物块下滑h时速度大小为,此时细线与水平夹角,线框刚好有一半处于右侧磁场中。(已知重力加速度g,不计一切摩擦)求:
(1)此过程中通过线框截面的电荷量q;
(2)此时安培力的功率;
(3)此过程在线框中产生的焦耳热Q。
如图所示,两足够长的平行光滑的金属导轨、相距为m,导轨平面与水平面夹角,导轨电阻不计,磁感应强度为的匀强磁场垂直导轨平面向上,长为m的金属棒垂直于、放置在导轨上,且始终与导轨接触良好,金属棒的质量为kg、电阻为Ω,两金属导轨的上端连接右侧电路,电路中通过导线接一对水平放置的平行金属板,两板间的距离和板长均为m,定值电阻为Ω,现闭合开关并将金属棒由静止释放,取m/s2,求:
(1)金属棒下滑的最大速度为多大?
(2)当金属棒下滑达到稳定状态时,整个电路消耗的电功率为多少?
(3)当金属棒稳定下滑时,在水平放置的平行金属板间加一垂直于纸面向里的匀强磁场,在下板的右端且非常靠近下板的位置处有一质量为kg、所带电荷量为C的液滴以初速度水平向左射入两板间,该液滴可视为质点,要使带电粒子能从金属板间射出,初速度应满足什么条件?
如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m,导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.
(1)求金属棒沿导轨由静止开始下滑时的加速度大小.
(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8 W,求该速度的大小.
(3)在上问中,若R=2 Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.
(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)
如图所示,水平面上有两根相距0.5m的足够长的光滑平行金属导轨MN和PQ,之间有一导体棒ab,导轨和导体棒的电阻忽略不计,在M和P之间接有阻值为R=2Ω的定值电阻。质量为0.2kg的导体棒ab长l=0.5m,与导轨接触良好。整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=0.4T。现在在导体棒ab上施加一个水平向右,大小为0.02N的恒力,使导体棒ab由静止开始运动,求:
⑴当ab中的电流为多大时,导体棒ab的速度最大?
⑵ab的最大速度是多少?
⑶若导体棒从开始到速度刚达到最大的过程中运动的位移s=10m,则在此过程中R上产生的热量是多少?
如图甲所示,固定在水平桌边上的“ ”型平行金属导轨足够长,倾角为53º,间距L=2m,电阻不计;导轨上两根金属棒ab、cd的阻值分别为R1=2Ω,R2=4Ω,cd棒质量m1=1.0kg,ab与导轨间摩擦不计,cd与导轨间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,整个导轨置于磁感应强度B=5T、方向垂直倾斜导轨平面向上的匀强磁场中。现让ab棒从导轨上某处由静止释放,当它刚要滑出导轨时,cd棒刚要开始滑动;g取10m/s2,sin37 º ="cos53" º =0.6,cos37 º =" sin53" º =0.8。
(1)在乙图中画出此时cd棒的受力示意图,并求出ab棒的速度;
(2)若ab棒无论从多高的位置释放,cd棒都不动,则ab棒质量应小于多少?
(3)假如cd棒与导轨间的动摩擦因数可以改变,则当动摩擦因数满足什么条件时,无论ab棒质量多大、从多高位置释放,cd棒始终不动?