两根足够长的光滑平行直导轨MN、PQ与水平面成θ角放置,两导轨间距为L,M、P两点间接有阻值为R的电阻。一根质量为m、阻值为R的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面向上,导轨和金属杆接触良好,导轨的电阻不计。现让ab杆由静止开始沿导轨下滑。
⑴求ab杆下滑的最大速度vm;
⑵ab杆由静止释放至达到最大速度的过程中,电阻R产生的焦耳热为Q,求该过程中ab杆下滑的距离x及通过电阻R的电量q。
光滑绝缘水平面上方有两个方向相反的水平方向匀强磁场,竖直虚线为其边界,磁场范围足够大,磁感应强度的大小分别为B1=B,B2=3B,竖直放置的正方形金属线框边长为l、电阻为R、质量为m,线框通过一绝缘细线与套在光滑竖直杆上的质量为M的物块相连,滑轮左侧细线水平。开始时,线框与物块静止在图中虚线位置且细线水平伸直。将物块由图中虚线位置由静止释放,当物块下滑h时速度大小为v0,此时细线与水平夹角=30°,线框刚好有一半处于右侧磁场中。(已知重力加速度g,不计一切摩擦)求:
(1)此过程中通过线框截面的电荷量q;
(2)此时安培力的功率;
(3)此过程在线框中产生的焦耳热Q。
(12分)如图(a)所示,间距为l、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I内有方向垂直于斜面的匀强磁场,磁感应强度为B;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度Bt的大小随时间t变化的规律如图(b)所示。t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上由静止释放。在ab棒运动到区域Ⅱ的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好。已知cd棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l,在t=tx时刻(tx未知)ab棒恰进入区域Ⅱ,重力加速度为g。求:
(1)通过cd棒电流的方向和区域I内磁场的方向;
(2)当ab棒在区域Ⅱ内运动时,cd棒消耗的电功率;
(3)ab棒开始下滑的位置离EF的距离;
(4)ab棒开始下滑至EF的过程中回路中产生的热量。
如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω。一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5。在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T。将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为多少?(重力加速度g取10 m/s2,sin 37°=0.6)
矩形线框abcd的边长分别为l1、l2,可绕它的一条对称轴OO′转动,线框电阻为R,转动角速度为ω。匀强磁场的磁感应强度为B,方向与OO′垂直,初位置时线圈平面与B平行,如图所示。
(1)以图示位置为零时刻,写出现框中感应电动势的瞬时值表达式。
(2)由图示位置转过90°的过程中,通过线框截面的电荷量是多少?
如图所示,两根平行金属导轨固定在同一水平面内,间距为L,导轨左端连接一个电阻。一根质量为m、电阻为r的金属杆ab垂直放置在导轨上。在杆的右方距杆为d处有一个匀强磁场,磁场方向垂直于导轨平面向下,磁感应强度为B。对杆施加一个大小为F、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v,之后进入磁场恰好做匀速运动。不计导轨的电阻,假定导轨与杆之间存在恒定的阻力。求:
(1)导轨对杆ab的阻力大小f;
(2)杆ab中通过的电流大小及其方向;
(3)导轨左端所接电阻的阻值R。
如图甲所示,空间存在一有界匀强磁场,磁场的左边界如虚线所示,虚线右侧范围足够大,磁场方向竖直向下.在光滑绝缘水平面内有一长方形金属线框,线框质量m=0.1kg,在水平向右的外力F作用下,以初速度v0=1m/s一直做匀加速直线运动,外力F大小随时间t变化的图线如图乙所示.以线框右边刚进入磁场时开始计时,求:
(1)线框cd边刚进入磁场时速度v的大小;
(2)若线框进入磁场过程中F做功为WF=0.27J,则在此过程中线框产生的焦耳热Q为多少?
如图所示,光滑绝缘水平桌面上固定一绝缘挡板P,质量分别为mA和mB的小物块A和B(可视为质点)分别带有+QA和+QB,的电荷量,两物块由绝缘的轻弹簧相连,一不可伸长的轻绳跨过定滑轮,一端与物块B连接,另一端连接轻质小钩。整个装置处于正交的场强大小为E、方向水平向左的匀强电场和磁感应强度大小为B、方向水平向里的匀强磁场中。物块A、B开始时均静止,已知弹簧的劲度系数为K,不计一切摩擦及AB间的库仑力,物块A、B所带的电荷量不变,B不会碰到滑轮,物块A、 B均不离开水平桌面。若在小钩上挂一质量为M的物块C并由静止释放,可使物块A对挡板P的压力为零,但不会离开P,则
(1)求物块C下落的最大距离;
(2)求小物块C从开始下落到最低点的过程中,小物块B的电势能的变化量,以及弹簧的弹性势能变化量:
(3)若C的质量改为2M,求小物块A刚离开挡板P时小物块B的速度大小,以及此时小物块B对水平桌面的压力。
一般在微型控制电路中,由于电子元件体积很小,直接与电源连接会影响电路精度,所以采用“磁”生“电”的方法来提供大小不同的电流。在某原件工作时,其中一个面积为S=4×10-4m2,匝数为10匝,每匝电阻为0.02Ω的线圈放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度大小B随时间t变化的规律如左图所示。求
(1)在开始的2s内,穿过单匝线圈的磁通量变化量;
(2)在开始的3s内,线圈产生的热量;
(3)小勇同学做了如右图的实验:将并排在一起的两根电话线分开,在其中一根电话线旁边铺设一条两端分别与耳机连接的导线,这条导线与电话线是绝缘的,你认为耳机中会有电信号吗?写出你的观点,并说明理由。
如图所示,两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R,导轨自身的电阻可忽略不计.斜面处在一匀强磁场中,磁场方向垂直于斜面向上.质量为m、电阻可以不计的金属棒ab,在沿着斜面与棒垂直的恒力F作用下沿导轨匀速上滑,并上升h高度,在这一过程中( )
A.作用于金属棒上的各个力的合力所做的功等于零 |
B.作用于金属棒上的各个力的合力所做的功等于mgh与电阻R上产生的焦耳热之和 |
C.恒力F与安培力的合力所做的功等于零 |
D.恒力F与重力的合力所做的功等于电阻R上产生的焦耳热 |
如图甲所示,不变形、足够长、质量为m1=0.2kg的“U”形金属导轨PQMN放在绝缘水平桌面上,QP与MN平行且距离d=1m,Q、M间导体电阻阻值R=4Ω,右内侧紧靠两固定绝缘小立柱1、2;光滑金属杆KL电阻阻值r=1Ω,质量m2=0.1kg,垂直于QP和MN,与QM平行且距离L=0.5m,左侧紧靠两固定绝缘小立柱3、4。金属导轨与桌面的动摩擦因数μ=0.5,最大静摩擦力等于滑动摩擦力,其余电阻不计。从t=0开始,垂直于导轨平面的磁场磁感应强度如图乙所示。
(1)求在整个过程中,导轨受到的静摩擦力的最大值fmax;
(2)如果从t=2s开始,给金属杆KL水平向右的外力,外力对金属杆作用的功率保持不变为P0=320W,杆到达最大速度时撤去外力,求撤去外力后QM上产生的热量QR=?
如图所示,两条足够长的平行金属导轨相距L,与水平面的夹角为,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度大小均为B,虚线上方轨道光滑且磁场方向向上,虚线下方轨道粗糙且磁场方向向下.当导体棒EF以初速度沿导轨上滑至最大高度的过程中,导体棒MN一直静止在导轨上,若两导体棒质量均为m、电阻均为R,导轨电阻不计,重力加速度为g,在此过程中导体棒EF上产生的焦耳热为Q,求:
(1)导体棒MN受到的最大摩擦力;(2)导体棒EF上升的最大高度.
矩形线框abcd的边长分别为l1、l2,可绕它的一条对称轴OO′转动,线框电阻为R,转动角速度为ω。匀强磁场的磁感应强度为B,方向与OO′垂直,初位置时线圈平面与B平行,如图所示。
(1)以图示位置为零时刻,写出现框中感应电动势的瞬时值表达式。
(2)由图示位置转过90°的过程中,通过线框截面的电荷量是多少?
如图所示,足够长的平行光滑金属导轨水平放置,宽度一端连接的电阻。导线所在空间存在竖直向下的匀强磁场,磁感应强度。导体棒MN放在导轨上,其长度恰好等于导轨间距,与导轨接触良好,导轨和导体棒的电阻均可忽略不计。在平行于导轨的拉力作用下,导体棒沿导轨向右匀速运动,速度。求:
(1)感应电动势E和感应电流;
(2)在0.1时间内,拉力的冲量的大小;
(3)若将MN换为电阻的导体棒,其他条件不变,求导体棒两端的电压。