如图,固定在水平桌面上的“∠”型平行导轨足够长,间距L=1m,电阻不计。倾斜导轨的倾角θ=53º,并与R=2Ω的定值电阻相连。整个导轨置于磁感应强度B=5T、方向垂直倾斜导轨平面向上的匀强磁场中。金属棒ab、cd的阻值为R1=R2=2Ω,cd棒质量m=1kg。ab与导轨间摩擦不计,cd与导轨间的动摩擦因数μ=0.3,设最大静摩擦力等于滑动摩擦力。现让ab棒从导轨上某处由静止释放,当它滑至某一位置时,cd棒恰好开始滑动。
(1)求此时通过ab棒的电流;
(2)求导体棒cd消耗的热功率与ab棒克服安培力做功的功率之比;
(3)若ab棒无论从多高的位置释放,cd棒都不动,则ab棒质量应小于多少?
(4)假如cd棒与导轨间的动摩擦因数可以改变,则当动摩擦因数满足什么条件时,无论ab棒质量多大、从多高位置释放,cd棒始终不动?
如图所示,宽度为L的金属框架竖直固定在绝缘地面上,框架的上端接有一特殊的电子元件,如果将其作用等效成一个电阻,则其阻值与其两端所加的电压成正比,即等效电阻R=kU,式中k为恒量。框架上有一质量为m的金属棒水平放置,金属棒与框架接触良好无摩擦,离地高为h,磁感应强度为B的匀强磁场与框架平面相垂直,将金属棒由静止释放,金属棒沿框架向下运动。不计金属棒及框架电阻,问:
⑴金属棒运动过程中,流过金属棒的电流多大?方向如何?
⑵金属棒经多长时间落到地面?金属棒下落过程中整个电路消耗的电能为多少?
如图所示,竖直悬挂的弹簧下端栓有导体棒ab,ab无限靠近竖直平行导轨的内侧、与导轨处于竖直向上的磁场中,导体棒MN平行导轨处于垂直导轨平面的磁场中,当MN以速度v向右匀速运动时,ab恰好静止,弹簧无形变,现使v减半仍沿原方向匀速运动,ab开始沿导轨下滑,磁场大小均为B,导轨宽均为L,导体棒ab、MN质量相同、电阻均为R,其他电阻不计,导体棒与导轨接触良好,弹簧始终在弹性范围内,最大静摩擦力等于滑动摩擦力,则
A.MN中电流方向从M到N |
B.ab受到的安培力垂直纸面向外 |
C.ab开始下滑直至速度首次达峰值的过程中,克服摩擦产生热量 |
D.ab速度首次达到峰值时,电路的电热功率为 |
如图所示,在水平面上有两条光滑的长直平行金属导轨MN、PQ,电阻忽略不计,导轨间距离为L,磁感应强度为B的匀强磁场垂直于导轨所在平面。质量均为m的两根金属a、b放置在导轨上,a、b接入电路的电阻均为R。轻质弹簧的左端与b杆连接,右端固定。开始时a杆以初速度。向静止的b杆运动,当a杆向右的速度为时,b杆向右的速度达到最大值,此过程中a杆产生的焦耳热为Q,两杆始终垂直于导轨并与导轨接触良好,则b杆达到最大速度时
A.b杆受到弹簧的弹力为 |
B.a杆受到的安培力为 |
C.a、b杆与弹簧组成的系统机械能减少量为Q |
D.弹簧具有的弹性势能为 |
如图甲,单匝圆形线圈c与电路连接,电阻R2两端与平行光滑金属直导轨p1e1f1、p2e2f2连接.垂直于导轨平面向下、向上有矩形匀强磁场区域Ⅰ、Ⅱ,它们的边界为e1e2,区域Ⅰ中垂直导轨并紧靠e1e2平放一导体棒ab.两直导轨分别与同一竖直平面内的圆形光滑绝缘导轨o1、o2相切连接,o1、o2在切点f1、f2处开有小口可让ab进入,ab进入后小口立即闭合.已知:o1、o2的直径和直导轨间距均为d,c的直径为2d;电阻R1、R2的阻值均为R,其余电阻不计;直导轨足够长且其平面与水平面夹角为,区域Ⅰ的磁感强度为B0.重力加速度为g.在c中边长为d的正方形区域内存在垂直线圈平面向外的匀强磁场,磁感强度B随时间t变化如图乙所示,ab在t=0~内保持静止.
(1)求ab静止时通过它的电流大小和方向;
(2)求ab的质量m;
(3)设ab进入圆轨道后能达到离f1f2的最大高度为h,要使ab不脱离圆形轨道运动,求区域Ⅱ的磁感强度B2的取值范围并讨论h与B2的关系式.
如图所示,四条水平虚线等间距地分布在同一竖直面上,间距为h.在Ⅰ、Ⅱ两区间分布着完全相同、方向水平向里的磁场,磁感应强度大小按B-t图变化(图中B0已知).现有一个长方形金属线框ABCD,质量为m,电阻为R,AB=CD=L,AD=BC=2h.用一轻质细线把线框ABCD竖直悬挂着,AB边恰好在Ⅰ区的正中央.t0(未知)时刻细线恰好松弛,之后立即剪断细线,当CD边到达M3N3时线框恰好匀速运动.(空气阻力不计,g=10m/s2)求:
(1)t0的值;
(2)线框AB边到达M2N2时的速率v;
(3)从剪断细线到整个线框通过两个磁场区的过程中产生的电能有多少?
如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,在金属线框的下方有一磁感应强度为B的匀强磁场区域,MN和M′N′是匀强磁场区域的水平边界,边界的宽度为S,并与线框的bc边平行,磁场方向与线框平面垂直.现让金属线框由距MN的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域的v-t图象(其中OA、BC、DE相互平行)。已知金属线框的边长为L(L<S)、质量为m,电阻为R,当地的重力加速度为g,图象中坐标轴上所标出的字母v1、v2、t1、t2、t3、t4均为已知量.(下落过程中bc边始终水平)根据题中所给条件,以下说法正确的是:
A.t2是线框全部进入磁场瞬间,t4是线框全部离开磁场瞬间
B.从bc边进入磁场起一直到ad边离开磁场为止,感应电流所做的功为mgS
C.V1的大小可能为
D.线框穿出磁场过程中流经线框横截面的电荷量比线框进入磁场过程中流经框横截面的电荷量多
如图所示,正方形导线框ABCD、abcd的边长均为L,电阻均为R,质量分别为2m和m,它们分别系在一跨过两个定滑轮的轻绳两端,且正方形导线框与定滑轮处于同一竖直平面内。在两导线框之间有一宽度为2L、磁感应强度大小为B、方向垂直纸面向里的匀强磁场。开始时导线框ABCD的下边与匀强磁场的上边界重合,导线框abcd的上边到匀强磁场的下边界的距离为L。现将系统由静止释放,当导线框ABCD刚好全部进入磁场时,系统开始做匀速运动。不计摩擦和空气阻力,则 ( )
A.两线框刚开始做匀速运动时轻绳上的张力FT=mg
B.系统匀速运动的速度大小:
C.两线框从开始运动至等高的过程中所产生的总焦耳热
D.导线框abcd通过磁场的时间
如图甲所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN,导轨的电阻均不计。导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=4Ω的电阻。有一匀强磁场垂直于导轨平面且方向向上,磁感应强度为B0=1T。将一根质量为m=0.05kg有一定阻值的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好。现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电量q=0.2C,且金属棒的加速度a与速度v的关系如图乙所示,设金属棒沿导轨向下运动过程中始终与NQ平行。(sin37°=0.6,cos37°=0.8)。求:
(1)金属棒与导轨间的动摩擦因数μ
(2)cd离NQ的距离s
(3)金属棒滑行至cd处的过程中,电阻R上产生的热量
(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系式)。
如图所示,两条金属导轨相距L=1m,水平部分处在竖直向下的匀强磁场B1中,其中MN段平行于PQ段,位于同一水平面内,NN0段与QQ0段平行,位于与水平面成倾角37°的斜面内,且MNN0与PQQ0均在竖直平面内。在水平导轨区域和倾斜导轨区域内分别有垂直于水平面和斜面的匀强磁场B1和B2,且B1=B2=0.5T;ab和cd是质量均为m=0.2kg、电阻分别为Rab=0.5Ω和Rcd=1.5Ω的两根金属棒,ab置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,cd置于光滑的倾斜导轨上,均与导轨垂直且接触良好。从t=0时刻起,ab棒在水平外力F1作用下由静止开始以a=2m/s2的加速度向右做匀加速直线运动,cd棒在平行于斜面方向的力F2的作用下保持静止状态。不计导轨的电阻。水平导轨足够长,ab棒始终在水平导轨上运动,已知sin37°=0.6,cos37°=0.8,g=10m/s2。求:
(1)t=5s时,cd棒消耗的电功率;
(2)从t=0时刻起,2.0s内通过ab棒的电荷量q;
(3)规定图示F1、F2方向作为力的正方向,分别求出F1、F2随时间t变化的函数关系;
(4)若改变F1和F2的作用规律,使ab棒的运动速度v与位移x满足v=0.4x,cd棒仍然静止在倾斜轨道上,求ab棒从静止开始到x=5m的过程中,F1所做的功。
如图所示,竖直平面内有一半径为r、电阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与距离为2r、电阻不计的平行光滑金属导轨ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,设平行导轨足够长。已知导体棒下落r/2时的速度大小为v1,下落到MN处时的速度大小为v2。
(1)求导体棒ab从A处下落r/2时的加速度大小;
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II这间的距离h和R2上的电功率P2;
(3)若将磁场II的CD边界略微下移,导体棒ab进入磁场II时的速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式。
如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为l,两导轨间连有一电阻R,导轨平面与水平面的夹角为θ,在两虚线间的导轨上涂有薄绝缘涂层.匀强磁场的磁感应强度大小为B,方向与导轨平面垂直.质量为m的导体棒从h高度处由静止释放,在刚要滑到涂层处时恰好匀速运动.导体棒始终与导轨垂直且仅与涂层间有摩擦,动摩擦因数μ=tanθ,其他部分的电阻不计,重力加速度为g,下列说法正确的是
A.导体棒到达涂层前做加速度减小的加速运动 |
B.在涂层区导体棒做减速运动 |
C.导体棒到达底端的速度为 |
D.整个运动过程中产生的焦耳热为 |
【原创】如图,光滑的足够长的平行水平金属导轨MN、PQ相距l,在M、P点和N、Q点间各连接一个额定电压为U、阻值恒为R的灯泡,在两导轨间efhg矩形区域内有垂直导轨平面竖直向下、宽为d的有界匀强磁场,磁感应强度为B0,且磁场区域可以移动。一电阻也为R、质量为m、长度也刚好为l的导体棒ab垂直固定在磁场左边的导轨上,离灯L1足够远。现让ab从静止开始向右做匀加速直线运动,当棒ab刚进入磁场如果保持拉力不变,进入磁场后ab棒刚好匀速运动,同时两灯恰好正常工作,棒ab与导轨始终保持良好接触,导轨电阻不计。
(1)求ab棒刚开始运动时到磁场右边界的距离;
(2)求ab棒刚开始运动时到磁场右边界这个过程中拉力F做的功;
(3)若取走导体棒ab,保持磁场不移动(仍在efhg矩形区域),而是均匀改变磁感应强度,为保证两灯都不会烧坏且有电流通过,试求磁感应强度增大到2B0的最短时间tmin。
如图所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为L=1m,质量m=0.1kg的导体棒,ab导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻R=1Ω,磁感强度B=1T的匀强磁场方向垂直于导体框架所在平面。当导体棒在电动机牵引下上升h=3.8m时,获得稳定速度,此过程中导体棒产生热量Q=2J。电动机工作时,电压表、电流表的读数分别为U=7V和I=1A,电动机的内阻r=1Ω。不计一切摩擦,g取10m/s2。求:
(1)导体棒所达到的稳定速度是多少?
(2)导体棒从静止到达稳定速度的时间是多少?(本题20分)
如图甲所示,电阻不计的光滑平行金属导轨固定在水平面上,导轨间距L="0.5" m,左端连接R="0.5" Ω的电阻,右端连接电阻不计的金属卡环。导轨间MN右侧存在方向垂直导轨平面向下的磁场.磁感应强度的B-t图象如图乙所示。电阻不计质量为m="1" kg的金属棒与质量也为m的物块通过光滑滑轮由绳相连,绳始终处于绷紧状态。PQ、MN到右端卡环距离分别为17.5 m和15 m。t=0时刻由PQ位置静止释放金属棒,金属棒与导轨始终接触良好,滑至导轨右端被卡环卡住不动。(g取10 m/s2)求:
(1)金属棒进入磁场时受到的安培力
(2)在0~6 s时间内电路中产生的焦耳热