在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以一定的初速度垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,已知ON=d,如图所示.不计粒子重力,求:
(1)粒子在磁场中运动的轨道半径R;
(2)粒子在M点的初速度v0的大小;
(3)粒子从M点运动到P点的总时间t。
如图所示,在坐标系xOy中,第一象限除外的其它象限都充满匀强磁场,磁感应强度都为B=0.12 T、方向垂直纸面向内。P是y轴上的一点,它到坐标原点O的距离l=0.40 m。一比荷=5.0×107 C/kg的带正电粒子从P点开始进入匀强磁场中运动,初速度v0=3.0×106 m/s、方向与y轴正方向成夹角θ=53°并与磁场方向垂直。不计粒子的重力作用。已知sin 53°=0.8,cos 53°=0.6,求:
(1)粒子在磁场中运动的轨道半径R;
(2)在第一象限中与x轴平行的虚线上方的区域内充满沿x轴负方向的匀强电场(如图),粒子在磁场中运动一段时间后进入第一象限,最后恰好从P点沿初速度的方向再次射入磁场。求匀强电场的电场强度E和电场边界(虚线)与x轴之间的距离d。
如图所示,空间有一个范围足够大的匀强磁场,磁感应强度为B,一个质量为m、电荷量为+q的带电小圆环套在一根固定的绝缘竖直细杆上,杆足够长,环与杆的动摩擦因数为μ。现使圆环以初速度v0向上运动,经时间t圆环回到出发位置。不计空气阻力。已知重力加速度为g。求当圆环回到出发位置时速度v的大小。
如图所示,固定在水平面上的斜面倾角为α,磁感应强度为B的匀强磁场垂直于斜面向上。将质量为m、带电量为+q的滑块轻轻放置在斜面上,求滑块稳定滑动时速度的大小和方向(与图中虚线之间的夹角)(斜面与滑块之间的动摩擦因数)
如图所示,套在绝缘棒上的小球,质量为1g,带有q=4×10-3C的正电荷,小球在棒上可以自由滑动,直棒放在互相垂直且沿水平方向的匀强电场E=10N/C和匀强磁场B=5T之中,小球和直棒之间的动摩擦因数为=0.2,求小球由静止沿棒竖直下落的最大加速度和最大速度。(设小球在运动过程中电量不变,重力加速度g=10m/s2)。
如图所示,有一对平行金属板,两板相距为0.05m.电压为10V;两板之间有匀强磁场,磁感应强度大小为B0=0.1T,方向与金属板面平行并垂直于纸面向里.图中右边有一半径R为0.1m、圆心为O的圆形区域内也存在匀强磁场,磁感应强度大小为,方向垂直于纸面向里.一正离子沿平行于金属板面,从A点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD方向射入圆形磁场区域,最后从圆形区域边界上的F点射出.已知速度的偏向角,不计离子重力.求:
(1)离子速度v的大小;
(2)离子的比荷;
(3)离子在圆形磁场区域中运动时间t.
(15分)从粒子源不断发射相同的带电粒子,初速可忽略不计,这些粒子经电场加速后,从M孔以平行于MN方向进入一个边长为d的正方形的磁场区域MNQP,如图所示,磁感应强度大小为B,方向垂直纸面向外,其中PQ的中点S开有小孔,外侧紧贴PQ放置一块荧光屏。当把加速电压调节为U时,这些粒子刚好经过孔S 打在荧光屏上,不计粒子的重力和粒子间的相互作用。请说明粒子的电性并求出粒子的比荷()。
在某空间存在着水平向右的匀强电场E和垂直于纸面向里的匀强磁场B,如图所示,一段光滑且绝缘的圆弧轨道AC固定在纸面内,其圆心为O点,半径,OA连线在竖直方向上,AC弧对应的圆心角。今有一质量、电荷量的带电小球(可视为质点),以的初速度沿水平方向从A点射入圆弧轨道内,一段时间后从C点离开,小球离开C点后做匀速直线运动。已知重力加速度,,不计空气阻力,求:
(1)匀强电场的场强E;
(2)小球刚离开C点时的速度大小;
(3)小球刚射入圆弧轨道时,轨道对小球的瞬间支持力
如图所示,斜面上表面光滑绝缘,倾角为,斜面上方有一垂直纸面向里的匀强磁场,磁感应强度为B,现有一个质量为m、带电量为+q的小球在斜面上被无初速度释放,假设斜面足够长,则小球从释放开始,下滑多远后离开斜面?
如图甲,真空中竖直放置两块相距为d的平行金属板P、Q,两板间加上如图乙最大值为U0的周期性变化的电压,在Q板右侧某个区域内存在磁感应强度大小为B、方向垂直于纸面向里的有界匀强磁场。在紧靠P板处有一粒子源A,自t=0开始连续释放初速不计的粒子,经一段时间从Q板小孔O射入磁场,然后射出磁场,射出时所有粒子的速度方向均竖直向上。已知电场变化周期,粒子质量为m,电荷量为+q,不计粒子重力及相互间的作用力。求:
(1)t=0时刻释放的粒子在P、Q间运动的时间;
(2)粒子射入磁场时的最大速率和最小速率;
(3)有界磁场区域的最小面积。
如下图所示,在空间有一直角坐标系xOy,直线OP与x轴正方向的夹角为30°,第一象限内有两个方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线OP是它们的理想边界,OP上方区域Ⅰ中磁场的磁感应强度为B。一质量为m、电荷量为q的质子(不计重力,不计质子对磁场的影响)以速度v从O点沿与OP成30°角的方向垂直磁场进入区域Ⅰ,质子先后通过磁场区域Ⅰ和Ⅱ后,恰好垂直打在x轴上的Q点(图中未画出)。试求:
(1)区域Ⅱ中磁场的磁感应强度大小;
(2)Q点到O点的距离。
如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直,一质量为m,电荷量为-q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场,粒子在磁场中的运动轨迹y轴交与M点,已知,。不计重力,求:
(1)M点与坐标原点O间的距;
(2)粒子从P点运动到M点所用的时间。
电子质量为m、电荷量为q,以速度v0与x轴成600角射入磁感应强度为B的匀强磁场中,最后落在x轴上的P点,如图所示,求:
(1)粒子运动的半径R与周期T
(2)OP的长度;
(3)电子从由O点射入到落在P点所需的时间t.
如图所示,在无限长的竖直边界AC和DE间,上、下部分分别充满方向垂直于拟〕EC平面向外的匀强磁场,上部分区域的磁感应强度大小为B0,OF为上、下磁场的水平分界线.质量为m、带电荷量为十q的粒子从AC边界上与O点相距为a的P点垂直于AC边界射人上方磁场区域,经OF上的Q点第一次进人下方磁场区域,Q与O点的距离为3a.不考虑粒子重力.
(1)求粒子射人时的速度大小;
(2)要使粒子不从AC边界飞出,求下方磁场区域的磁感应强度应满足的条件;
(3)若下方区域的磁感应强度B=3B。,粒子最终垂直DE边界飞出,求边界DE与AC间距离的可能值.
如图所示,水平放置的两块长直平行金属板a、b相距d =0.10 m,a、b间的电场强度为E=5.0×105 N/C,b板下方整个空间存在着磁感应强度大小为B=0.6 T、方向垂直纸面向里的匀强磁场.今有一质量为m=4.8×10-25 kg、电荷量为q=1.6×10-18 C的带正电的粒子(不计重力),从贴近a板的左端以v0=1.0×106 m/s的初速度水平射入匀强电场,刚好从狭缝P处穿过b板而垂直进入匀强磁场,最后粒子回到b板的Q处(图中未画出).求:
(1)判断a、b两板间电场强度的方向;
(2)求粒子到达P处的速度与水平方向的夹角θ;
(3)求P、Q之间的距离L(结果可保留根号).