如图所示,空间存在垂直于纸面的均匀磁场,在半径为a的圆形区域内、外,磁场方向相反,磁感强度的大小均为B.一半径为b,电阻为R的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合.在内外磁场同时由B均匀地减小到零的过程中,通过导线截面的电量q=.
(15分)如图所示,在直角坐标系中,x轴水平,y轴竖直,x轴上方空间只存在重力场,第III象限存在沿y轴正方向的匀强电场和垂直xy平面向里的匀强磁场,在第Ⅳ象限由沿x轴负方向的匀强电场,场强大小与第III象限存在的电场的场强大小相等.一质量为m,带电荷量大小为q的质点a,从y轴上y=h处的P1点以一定的水平速度沿x轴负方向抛出,它经过x=﹣2h处的P2点进入第Ⅲ象限,恰好做匀速圆周运动,又经过y轴上方y=﹣2h的P3点进入第Ⅳ象限,试求:
(1)质点a到达P2点时速度的大小和方向;
(2)第III象限中匀强电场的电场强度和匀强磁场的磁感应强度的大小;
(3)质点a进入第Ⅳ象限且速度减为零时的位置坐标.
如图所示,在平面直角坐标系xOy内,第II、III象限内存在沿y轴正方向的匀强电场,第I、IV象限内存在半径为L的圆形匀强磁场,磁场圆心在M(L,0)点,磁场方向垂直坐标平面向外,一带正电的粒子从第III象限中的Q(-2L,-L)点以速度沿x轴正方向射出,恰好从坐标原点O进入磁场,从P(2L,0)点射出磁场,不计粒子重力,求:
(1)粒子进入磁场时的速度大小和方向;
(2)电场强度与磁感应强度大小之比;
(3)若L=1m,则粒子在磁场与电场中运动的总时间是多少?
如图所示的天平可用来测定磁感应强度,天平的右臂下面挂有一个矩形线圈,宽为L,共N匝,线圈下部悬在匀强磁场中,磁场方向垂直纸面,当线圈中通有电流I时,方向如图,在天平左右两盘各加质量分别为m1、m2的砝码,天平平衡,当电流反向时(大小不变),右盘再加上质量为m的砝码后,天平重新平衡,试求(g=10m/s2):
(1)判定磁场的方向并推导磁感应强度的表达式
(2)当L=0.1m; N=10; I=0.1A;m=9×10-3kg时磁感应强度是多少?
如图所示,垂直于纸面向里的匀强磁场有明显的圆形边界,圆心为O,半径为R,磁感应强度为B,现在在纸面内放上圆线圈,圆心在O处,半径为r(r<R),共有N匝。求:穿过这个线圈的磁通量。
如图所示,直角坐标系xOy位于竖直平面内,在第四象限存在匀强磁场和匀强电场,磁场的磁感应强度为B,方向垂直xOy平面向里,电场线平行于y轴,一质量为m,电荷量大小为q的带负电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,最后从y轴上的N点沿垂直于y轴的方向离开电场和磁场,ON之间的距离为L.小球过M点时速度方向与x轴正方向夹角为θ,不计空气阻力,重力加速度为g,求:
(1)电场强度E的大小和方向;
(2)小球从A点抛出时初速度v0的大小;
(3)A点到x轴的高度h.
如图所示,两根平行光滑金属导轨MP、NQ与水平面成θ=37°角固定放置,导轨电阻不计,两导轨间距L="0.5" m,在两导轨形成的斜面上放一个与导轨垂直的均匀金属棒ab,金属棒ab处于静止状态,它的质量为。金属棒ab两端连在导轨间部分对应的电阻为R2=2Ω,电源电动势E=2V,电源内阻r=1Ω,电阻R1=2Ω,其他电阻不计。装置所在区域存在一垂直于斜面MPQN的匀强磁场。(已知sin37°=0.6,cos37°=0.8,)求:
(1)所加磁场磁感应强度方向;
(2)磁感应强度B的大小。
一个质量m=0.1g的小滑块,带有q=5×10-4C的电荷放置在倾角 α=30°光滑斜面上(绝缘),斜面置于B=0.5T的匀强磁场中,磁场方向垂直纸面向里,如图所示,小滑块由静止开始沿斜面滑下,其斜面足够长,小滑块滑至某一位置时,要离开斜面。(g=10m/s2)求:
(1)小滑块带何种电荷?
(2)小滑块离开斜面的瞬时速度多大?
(3)该斜面的长度至少多长?
如图所示,一个100匝的圆形线圈(图中只画了2匝),面积为200 cm2,线圈的电阻为1 Ω,在线圈外接一个阻值为4 Ω的电阻和一个理想电压表。线圈放入方向垂直线圈平面指向纸内的匀强磁场中,磁感强度随时间变化规律如B-t图所示,求:
(1)t=3s时电压表的读数。
(2)4~6s内经过电阻R的电量。
如图所示,MN、PQ是平行金属板(厚度可忽略),板长为L,两板间距离为d,PQ板带正电,MN板带负电,在PQ板的上方有垂直纸面向里的匀强磁场,一个电荷量为q、质量为m的带负电粒子以速度从MN板边缘沿平行与板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场,不计粒子重力,试求:
(1)两金属板间所加电压U的大小;
(2)匀强磁场的磁感应强度B的大小。
【加试题】(12分)一圆筒的横截面如图所示,其圆心为O。筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷.N板带等量负电荷。质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中.粒子与圈筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:
(1)M、N间电场强度E的大小;
(2)圆筒的半径R:
(3)保持M、N间电场强度E不变,仅将MN板间距离缩小为d/3,粒子仍从M板边缘的P处由静止释放,粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。
均匀导线制成的单位正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m。将其置于磁感强度为B的水平匀强磁场上方h处,如图所示。线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界平行。当cd边刚进入磁场时,
(1)求线框中产生的感应电动势大小;
(2)求cd两点间的电势差大小;
(3)若此时线框加速度恰好为零,求线框下落的高度h所应满足的条件。
矩形导线框abcd置于竖直向上的磁感应强度为B=0.6T的匀强磁场中,其中ab、cd边长度相等均为L=0.5m,且ab、cd边质量均忽略不计,bc边长度为d=0.2m,质量为m=0.02kg,线框可绕MN转动,导线框中通以MabcdN方向的恒定电流后,导线框往纸外偏转角θ=370而达到平衡。(sin370=0.6 cos370=0.8,g=10m/s2) 求:
(1)导线框达到平衡时,穿过平面abcd的磁通量ϕ为多少?
(2)线框中电流强度I大小
空间有一半径为R的圆形匀强磁场区域,磁场方向垂直于纸面.一质量为m、电荷量为q(q>0)的粒子以速率v0从A点沿圆的半径AO射入磁场,从B点沿半径OB方向离开磁场,形成如图所示的轨迹,已知∠AOB=θ=120°,不计粒子的重力。求:
(1)该圆形区域内匀强磁场的磁感应强度大小和方向,
(2)该粒子从A运动到B的时间。
载流长直导线周围磁场的磁感应强度大小为B=kI/r, 式中常量k>0,I为电流强度,r为距导线的距离。在水平长直导线MN正下方,矩形线圈abcd通以逆时针方向的恒定电流,被两根轻质绝缘细线静止地悬挂,如图所示。开始时MN内不通电流,此时两细线内的张力均为T0。当MN通以强度为I1的电流时,两细线内的张力均减小为T1,当MN内电流强度变为I2时,两细线内的张力均大于T0。
(1)分别指出强度为I1、I2的电流的方向;
(2)求MN分别通以强度为I1、I2的电流时,线框受到的安培力F1与F2大小之比;
(3)当MN内的电流强度为I3时两细线恰好断裂,在此瞬间线圈的加速度大小为a,求I3。