如图所示,在竖直平面内,光滑绝缘直杆AC与半径为R的圆周交于B、C两点,在圆心处有一固定的正点电荷,B点为AC的中点,C点位于圆周最低点.现有一质量为m、电荷量为q套在杆上的带负电小球(可视为质点)从A点由静止开始沿杆下滑.已知重力加速度为g,A点距过C点的水平面的竖直高度为3R,小球滑到B点时的速度大小为2.求:
(1)小球滑至c点时的速度的大小;
(2)A、B两点间的电势差;
(3)若以C点做为参考点(零电势点),试确定A点的电势.
在真空中的光滑绝缘水平面上的O点处,固定一个带正电的小球,所带电荷量为Q,直线MN通过O点,N为OM的中点,OM的距离为d.M点处固定一个带负电的小球,所带电荷量为q,质量为m,如图所示.(静电力常量为k)
(1)求N点处的场强大小和方向;
(2)求无初速释放M处的带电小球q时,带电小球的加速度大小;
(3)若点电荷Q所形成的电场中各点的电势的表达式φ=,其中r为空间某点到点电荷Q的距离.求无初速释放带电小球q后运动到N处时的速度大小v.
如图所示,在竖直平面内,光滑绝缘直杆AC与半径为R的圆周交于B、C两点,在圆心处有一固定的正点电荷,B点为AC的中点,C点位于圆周最低点。现有一质量为m、电荷量为q套在杆上的带负电小球(可视为质点)从A点由静止开始沿杆下滑。已知重力加速度为g,A点距过C点的水平面的竖直高度为3 R,小球滑到B点时的速度大小为2。求:
(1)小球滑至C点时的速度的大小;
(2)A、B两点间的电势差;
(3)若以C点做为零电势点,试确定A点的电势。
如图所示,长为2L的平板绝缘小车放在光滑水平面上,小车两端固定两个绝缘的带电小球A和B。A、B所带电荷量分别为+2q和 3q.小车(包括带电小球A、B)的总质量为m。虚线MN与PQ平行且相距3L,开始时虚线MN位于小车正中间。若视带电小球为质点,在虚线MN、PQ间加上方向水平向右、场强大小为E的匀强电场后,小车开始运动。试求:
(1)小车向右运动的最大距离;
(2)此过程中小球B电势能的变化量;
(3)小球A从开始运动至刚离开电场所用的时间。
如图所示,在E=103V/m的竖直匀强电场中,有一光滑的半圆形绝缘轨道QPN与一水平绝缘轨道MN连接,半圆形轨道平面与电场线平行,P为QN圆弧的中点,其半径R=40cm,一带正电q=10-4C的小滑块质量m=10g,与水平轨道间的动摩擦因数μ=0.15,位于N点右侧1.5m处,取g=10m/s2,求:
(1)要使小滑块恰能运动到圆轨道的最高点Q,则滑块应以多大的初速度v0?
(2)这样运动的滑块通过P点时对轨道的压力是多大?
如图所示,固定于同一条竖直线上的A、B是两个带等量异种电荷的点电荷,电荷量分别为+Q和-Q,A、B相距为2d。MN是竖直放置的光滑绝缘细杆,另有一个穿过细杆的带电小球p,其质量为m、电荷量为+q(可视为点电荷,不影响电场的分布),现将小球p从与点电荷A等高的C处由静止开始释放,小球p向下运动到距C点距离为d的O点时,速度为v,已知MN与AB之间的距离为d,静电力常量为k,重力加速度为g。求:
(1)C、O间的电势差UCO;
(2)小球p在O点时的加速度;
(3)小球p经过与点电荷B等高的D点时的速度。
如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量m =0.04kg,电量q=+2×10-4C的可视为质点的带电滑块与弹簧接触但不栓接.某一瞬间释放弹簧弹出滑块,滑块从水平台右端A点水平飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下.已知AB的竖直高度h=0.45m,倾斜轨道与水平方向夹角为α=37°,倾斜轨道长为L=2.0m,带电滑块与倾斜轨道的动摩擦因数μ=0.5.倾斜轨道通过光滑水平轨道CD(足够长)与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程滑块的电量保持不变.只有在竖直圆轨道处存在场强大小为E=2×103V/m,方向竖直向下的匀强电场.cos37°=0.8,sin37°=0.6,重力加速度g取10 m/s2,求:
(1)被释放前弹簧的弹性势能?
(2)要使滑块不离开圆轨道,竖直圆弧轨道的半径应该满足什么条件?
(3)如果竖直圆弧轨道的半径R=0.9m,滑块进入轨道后可以有多少次通过竖直圆轨道上距水平轨道高为0.01m的点P位置?
如图所示,M、N是水平放置的一对正对平行金属板,其中M板中央有一小孔O,板间存在竖直向上的匀强电场,AB是一根长为9L的轻质绝缘细杆,在杆上等间距地固定着10个完全相同的带电小球(小球直径略小于孔),每个小球带电荷量为q,质量为m,相邻小球间的距离为L,小球可视为质点,不考虑带电小球之间的库仑力.现将最下端的小球置于O处,然后将AB由静止释放,AB在运动过程中始终保持竖直,经观察发现,在第二个小球进入电场到第三个小球进入电场前这一过程中,AB做匀速直线运动.已知MN两板间距大于细杆长度.
(1)求两板间电场强度的大小;
(2)求上述匀速运动过程中速度大小;
(3)若AB以初动能EkO从O处开始向下运动,恰好能使第10个小球过O点,求EkO的大小.
一质量为m=6kg带电量为q= -0.1C的小球P自动摩擦因数μ=0.5倾角θ=53°的粗糙斜面顶端由静止开始滑下,斜面高h=6.0m,,斜面底端通过一段光滑小圆弧与一光滑水平面相连。整个装置处在水平向右的匀强电场中,场强E=200N/C,忽略小球在连接处的能量损失,当小球运动到水平面时,立即撤去电场。水平面上放一静止的不带电的质量也为m的1/4圆槽Q,圆槽光滑且可沿水平面自由滑动,圆槽的半径R=3m,如图所示。(sin53°="0.8" ,cos53°="0.6" ,g=10m/s2。)
(1)在沿斜面下滑的整个过程中,P球电势能增加多少?
(2)小球P运动到水平面时的速度大小。
(3)试判断小球P能否冲出圆槽Q。
如图所示,在绝缘水平面上,相距为L的A、B两点处分别固定着两个等量正电荷,a、b是AB连线上两点,其中Aa=Bb=L/4,O为AB的中点,一质量为m带电量为+q的小滑块(可视为质点)以出动能从a点出发,沿AB直线向b点运动,其中小滑块第一次经过O点时的动能为初动能的n倍(n>1),到达b点时动能恰好为零,小滑块最终停在O点,求:
(1)小滑块与水平面间的滑动摩擦因数;
(2)Ob两点间的电势差;
如图所示,在O点放置一个正电荷。在经过O点的竖直平面内的A点,自由释放一个带正电的小球,小球的质量为、电荷量为。小球落下的轨迹如图中虚线所示,它与以O为圆心、R为半径的圆中实线表示)相交于B、C两点,O、C在同一水平线上,,A距离的竖直高度为h。若小球通过B点的速度为,试求:
(1)小球通过C点的速度大小;
(2)小球由A到C的过程中损失的机械能。
如图所示,水平绝缘光滑的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径.在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度.现有一电荷量,质量的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点.取.试求:
(1)带电体在圆形轨道C点的速度大小.
(2)PB间的距离
(3)D点到B点的距离.
(4)带电体在从P开始运动到落至D点的过程中的最大动能.(结果保留3位有效数字)
如图所示,可视为质点的三物块A、B、C放在倾角为30°、长L=2m的固定斜面上,物块与斜面间的动摩擦因数,A与B紧靠在一起,C紧靠在固定挡板上,三物块的质量分别为mA=0.80kg、mB=0.64kg、mC=0.50kg,其中A不带电,B、C的带电量分别为qB=+4.0×l0-5C、qC=+2.0×l0-5C且保持不变,开始时三个物块均能保持静止且与斜面间均无摩擦力作用。如果选定两点电荷在相距无穷远处的电势能为0,则相距为r时,两点电荷具有的电势能可表示为。现给A施加一平行于斜面向上的拉力F,使A在斜面上做加速度a=1.5m/s2的匀加速直线运动,经过时间t0,拉力F变为恒力,当A运动到斜面顶端时撤去拉力F。已知静电力常量k=9.0×109N·m2/C2,g=10m/s2。求:
(1)未施加拉力F时物块B、C间的距离;
(2)t0时间内A上滑的距离
(3)t0时间内库仑力做的功;
(4)拉力F对A物块做的总功。
“电子能量分析器”主要由处于真空中的电子偏转器和探测板组成.偏转器是由两个相互绝缘、半径分别为RA和RB的同心金属半球面A和B构成,A、B为电势值不等的等势面,其过球心的截面如图所示.一束电荷量为E、质量为m的电子以不同的动能从偏转器左端M的正中间小孔垂直入射,进入偏转电场区域,最后到达偏转器右端的探测板N,其中动能为Ek0的电子沿等势面C做匀速圆周运动到达N板的正中间.忽略电场的边缘效应.
(1)判断球面A、B的电势高低,并说明理由;
(2)求等势面C所在处电场强度E的大小;
(3)若半球面A、B和等势面C的电势分别为φA、φB和φC,则到达N板左、右边缘处的电子,经过偏转电场前、后的动能改变量△Ek左和△Ek右分别为多少?
(4)比较|△Ek左|和|△Ek右|的大小,并说明理由.