如图所示,长为2L的平板绝缘小车放在光滑水平面上,小车两端固定两个绝缘的带电小球A和B。A、B所带电荷量分别为+2q和 3q.小车(包括带电小球A、B)的总质量为m。虚线MN与PQ平行且相距3L,开始时虚线MN位于小车正中间。若视带电小球为质点,在虚线MN、PQ间加上方向水平向右、场强大小为E的匀强电场后,小车开始运动。试求:(1)小车向右运动的最大距离;(2)此过程中小球B电势能的变化量;(3)小球A从开始运动至刚离开电场所用的时间。
如图所示,水平传送带以一定速度匀速运动,将质量m=1kg的小物块轻轻放在传送带上的P点,物块运动到A点后被水平抛出,小物块恰好无碰撞地沿圆弧切线从B点进入竖直光滑圆弧轨道下滑.B、C为圆弧上的两点,其连线水平,已知圆弧对应圆心角,A点距水平面的高度h=0.8m.小物块到达C点时的速度大小与B点相等,并沿固定斜面向上滑动,小物块从C点到第二次经过D点的时间间隔为0.8s,已知小物块与斜面间的动摩擦因数,重力加速度g取10 m/s2,取,cos53°=0.6,求:(1)小物块从A到B的运动时间;(2)小物块离开A点时的水平速度大小;(3)斜面上C、D点间的距离.
消防车的供水系统主要由水泵、输水管道和水炮组成。如图所示,消防水炮离地高度为H,建筑物上的火点离地高度为h,水炮与火点的水平距离为x,水泵的功率为P,整个供水系统的效率η=0.6。假设水从水炮水平射出,不计空气阻力,取g=10m/s2。 (1)若H=80m,h=60m,水炮出水速度v0=30m/s,求水炮与起火建筑物之间的水平距离x; (2)在(1)问中,若水炮每秒出水量m0="60" kg,求水泵的功率P; (3)当完成高层灭火后,还需要对散落在火点正下方地面上的燃烧物进行灭火,将水炮竖直下移至H´=45m,假设供水系统的效率η不变,水炮出水口的横截面积不变,水泵功率应调整为P´,则P´应为多大?
如图甲所示,一竖直平面内的轨道由粗糙斜面AD和光滑圆轨道DCE组成,AD与DCE相切于D点,C为圆轨道的最低点,将一小物块置于轨道ADC上离地面高为H处由静止释放,用力传感器测出其经过C点时对轨道的压力N,改变H的大小,可测出相应的N的大小,N随H的变化关系如图乙折线PQI所示(PQ与QI两直线相连接于Q点),QI反向延长交纵轴于F点(0,5.8N),重力加速度g取10m/s2,求:(1)求出小物块的质量m;圆轨道的半径R、轨道DC所对应的圆心角θ;(2)小物块与斜面AD间的动摩擦因数μ。(3)若要使小物块能运动到圆轨道的最高点E,则小物块应从离地面高为H处由静止释放,H为多少?
如图所示,半径为R的 1/4光滑圆弧轨道最低点D与水平面相切,在D点右侧L0=4R处用长为R的细绳将质量为m的小球B(可视为质点)悬挂于O点,小球B的下端恰好与水平面接触,质量为m的小球A(可视为质点)自圆弧轨道C的正上方H高处由静止释放,恰好从圆弧轨道的C点切入圆弧轨道,已知小球A与水平面间的动摩擦因数μ=0.5,细绳的最大张力Fm=7mg,重力加速度为g,试求:(1)若H=R,小球A到达圆弧轨道最低点D时所受轨道的支持力;(2)试讨论H在什么范围内,小球A与B发生弹性碰撞后细绳始终处于拉直状态。
如图所示,平行金属导轨竖直放置,仅在虚线MN下面的空间存在着磁感应强度随高度变化的磁场(在同一水平线上各处磁感应强度相同),磁场方向垂直纸面向里导轨上端跨接一定值电阻R,质量为m的金属棒两端各套在导轨上并可在导轨上无摩擦滑动,导轨和金属棒的电阻不计,将导轨从O处由静止释放,进入磁场后正好做匀减速运动,刚进入磁场时速度为v,到达P处时速度为v/2,O点和P点到MN的距离相等,求:(1)求金属棒在磁场中所受安培力F1的大小;(2)若已知磁场上边缘(紧靠MN)的磁感应强度为B0,求P处磁感应强度BP;(3)在金属棒运动到P处的过程中,电阻上共产生多少热量?