质量为M的小车,如图5-11所示,上面站着一个质量为m的人,以v0的速度在光滑的水平面上前进。现在人用相对于小车为u的速度水平向后跳出后,车速增加了多少?
如图5-10所示,倾角θ=30°,高为h的三角形木块B,静止放在一水平面上,另一滑块A,以初速度v0从B的底端开始沿斜面上滑,若B的质量为A的质量的2倍,当忽略一切摩擦的影响时,要使A能够滑过木块B的顶端,求V0应为多大?
如图5-7所示将一光滑的半圆槽置于光滑水平面上,槽的左侧有一固定在水平面上的物块。今让一小球自左侧槽口A的正上方从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是: [ ]
A.小球在半圆槽内运动的全过程中,只有重力对它做功 |
B.小球在半圆槽内运动的全过程中,小球与半圆槽在水平方向动量守恒 |
C.小球自半圆槽的最低点B向C点运动的过程中,小球与半圆槽在水平方向动量守恒 |
D.小球离开C点以后,将做竖直上抛运动。 |
如图5-6所示,物体A置于小车B上,A与B之间光滑无摩擦。它们以共同的速度v前进。突然碰到障碍物C,将A从车上碰了出去,A被碰回的速度大小也是v。问:小车B的速度将怎样变化?
在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M,枪内装有n颗子弹,每颗质量为m,枪口到靶的距离为l,子弹射出枪口时相对于地面的速度为v,在发射后一颗子弹时,前一颗子弹已陷入靶中,则在发射完n颗子弹后,小船后退的距离为多少?
一绳跨过定滑轮,两端分别栓有质量为M1,M2的物块(M2>M1如图5-4),M2开始是静止于地面上,当M1自由下落H距离后,绳子才被拉紧,求绳子刚被拉紧时两物块的速度。
总质量为M的装砂的小车,正以速度v0在光滑水平面上前进、突然车底漏了,不断有砂子漏出来落到地面,问在漏砂的过程中,小车的速度是否变化?
一炮弹在水平飞行时,其动能为=800J,某时它炸裂成质量相等的两块,其中一块的动能为=625J,求另一块的动能
从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是: [ ]
A.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小 |
B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小 |
C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢 |
D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。 |
如图10-1所示,在光滑的水平支撑面上,有A、B两个小球。A球动量为10kg·m/s,B球动量为12kg·m/s。A球追上B球并相碰,碰撞后,A球动量变为8kg·m/s,方向没变,则A、B两球质量的比值为( )
A、0.5 B、0.6 C、0.65 D、0.75
试在下述简化情况下,由牛顿定律和运动学公式导出动量守恒定律的表达式:系统是两个质点,相互作用力是恒力,不受其他力,沿直线运动,要求说明推导过程中每步的根据,以及公式中各符号和最后结果中各项的意义。
如图5-2,有一水平轨道AB,在B点处与半径R=160m的光滑弧形轨道BC相切,一质量为M=0.99kg的木块静止于B处,现有一颗质量为的子弹以的水平速度从左边射入木块且未穿出,如图所示,已知木块与该水平轨道的动摩擦因数,,试求子弹射入木块后,木块需经多长时间停止?
如图所示,倾角为θ的固定斜面充分长,一质量为m上表面光滑的足够长的长方形木板A正以速度v0沿斜面匀速下滑,某时刻将质量为2 m的小滑块B无初速度地放在木板A上,则在滑块与木板都在滑动的过程中( )
A.木板A的加速度大小为3gsinθ |
B.木板A的加速度大小为零 |
C.A、B组成的系统所受合外力的冲量一定为零 |
D.木板A的动量为mv0时,小滑块B的动量为vm0 |
如图所示,质量m1="0.3" kg的小车静止在光滑的水平面上,车长L="15" m,现有质量m2="0.2" kg可视为质点的物块,以水平向右的速度v0="2" m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数=0.5,取g="10" m/s2,求
(1) 物块在车面上滑行的时间t;
(2) 要使物块不从小车右端滑出,物块滑上小车左端的速度v0/不超过多少。