如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上。现有一滑块A从光滑曲面上离桌面h高处由
静止开始下滑下,与滑块B发生碰撞(时间极短)并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧继续在水平桌面上匀速运动一段时间后从桌面边缘飞出。已知
求:(1)滑块A与滑块B碰撞结束瞬间的速度;
(2)被压缩弹簧的最大弹性势能;
(3)滑块C落地点与桌面边缘的水平距离。
图中滑块和小球的质量均为m,滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O由一不可伸长的轻绳相连,轻绳长为l。开始时,轻绳处于水平拉直状态,小球和滑块均静止。现将小球由静止释放,当小球到达最低点时,滑块刚好被一表面涂有粘性物质的固定挡板粘住,在极短的时间内速度减为零,小球继续向左摆动,一段时间后达到最高点。求:
(1)从滑块与挡板接触到速度刚好变为零的过程中,挡板阻力对滑块的冲量;
(2)滑块速度变为零后,小球向左摆动细线与竖直方向的最大夹角。
如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数=0.3,OB部分光滑。另一小物块a.放在车的最左端,和车一起以Vo=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连。已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内。a、b两物块视为质点质量均为m=lkg,碰撞时间极短且不粘连,碰后一起向右运动。(取g="10" m/s2)求:
(1)物块a与b碰后的速度大小;
(2)当物块a相对小车静止时小车右端B到挡板的距离;
(3)当物块a相对小车静止时在小车上的位置到O点的距离。
如图所示,一半径r = 0.2m的光滑圆弧形槽底端B与水平传带相接,传送带的运行速度为v0=4m/s,长为L="1.25m" , 滑块与传送带间的动摩擦因数=0.2,DEF为固定于竖直平面内的一段内壁光滑的中空方形细管,EF段被弯成以O为圆心、半径R = 0.25m的一小段圆弧,管的D端弯成与水平传带C端平滑相接,O点位于地面,OF 连线竖直.一质量为M=0.1kg的物块a从圆弧顶端A点无初速滑下,滑到传送带上后做匀加速运动,过后滑块被传送带送入管DEF,管内顶端F点放置一质量为m=0.1kg的物块b.已知a、b两物块均可视为质点,a、b横截面略小于管中空部分的横截面,重力加速度g取10m/s2.求:
(1)滑块a到达底端B时的速度vB;
(2) 滑块a刚到达管顶F点时对管壁的压力;
(3) 滑块a滑到F点时与b发生正碰并粘在一起飞出后落地,求落点到O点的距离x(不计空气阻力)
(4)已知若a的质量M≥m,a与b发生弹性碰撞,求物块b滑过F点后在地面的首次落点到O点距离x的范围.(=2.2)
装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对以下简化模型的计算可以粗略说明其原因.
质量为2m、厚度为2d的钢板静止在水平光滑桌面上。质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离平行放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞。不计重力影响。
如图所示,水平地面和半圆轨道面均光滑,质量M=1kg的小车静止在地面上,小车上表面与R=0.24m的半圆轨道最低点P的切线相平。现有一质量m=2kg的滑块(可视为质点)以v0=6m/s的初速度滑上小车左端,二者共速时小车还未与墙壁碰撞,当小车与墙壁碰撞时即被粘在墙壁上,已知滑块与小车表面的滑动摩擦因数μ=0.2,g取10m/s2,求:
(1)滑块与小车共速时的速度及小车的最小长度;
(2)滑块m恰好从Q点离开圆弧轨道时小车的长度;
(3)讨论小车的长度L在什么范围,滑块能滑上P点且在圆轨道运动时不脱离圆轨道?
、如图所示,固定的光滑平台左端固定有一光滑的半圆轨道,轨道半径为R,平台上静止放着两个滑块A、B,其质量mA=m,mB=2m,两滑块间夹有少量炸药。平台右侧有一小车,静止在光滑的水平地面上,小车质量M=3m,车长L=2R,车面与平台的台面等高,车面粗糙,动摩擦因数μ="0.2" ,右侧地面上有一立桩,立桩与小车右端的距离为S,S在0<S<2R的范围内取值,当小车运动到立桩处立即被牢固粘连。点燃炸药后,滑块A恰好能够通过半圆轨道的最高点D,滑块B冲上小车。两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个滑块的速度方向在同一水平直线上,重力加速度为g=10m/s2。求:
(1)滑块A在半圆轨道最低点C受到轨道的支持力FN。
(2)炸药爆炸后滑块B的速度大小VB。
(3)请讨论滑块B从滑上小车在小车上运动的过程中,克服摩擦力做的功Wf与S的关系。
如图所示,一个质量为M="2" kg的凹槽静置在光滑的水平地面上,凹槽内有一质量为m="1" kg的小滑块,某时刻小滑块获得水平向右的瞬时速度v0 ="10" m/s,此后发现小滑块与凹槽左右两壁不断碰撞,当小滑块速度大小为1 m/s时,试求此时系统损失的机械能。
水平放置的轻弹簧左端固定,小物块P(可视为质点)置于水平桌面的A点并与弹簧的右端接触但不相连,此时弹簧处于原长,现用力缓慢地向左水平推P至B点(弹簧仍在弹性限度内),推力做的功是6J,撤去推力后,P沿桌面滑到一辆停在光滑水平地面、紧靠水平桌边缘的平板小车Q上,小车的上表面与桌面在同一水平面上,已知P的质量为m=1kg,Q的质量为M=4kg,A、B间距L1=20cm,A离桌边沿C的距离L2=60cm,P与桌面间的动摩擦因数为μ1=0.4,g=10m/s2,物块P滑出小车Q时的速度υ1=0.8m/s,小车Q长L3=50cm.求:
(1)小物块P在桌边沿C的速度大小υc=?
(2)小物块P与小车Q上表面间的动摩擦因数μ2=?
(3)小物块P在小车上表面上运动的过程中,小车通过的距离?
如图所示,质量为m1=0.01Kg的子弹A,垂直纸筒的旋转轴穿过高速旋转的纸筒B且只在B上留下一个弹孔,子弹穿过B后打入质量为m2=0.99Kg的木块C中,并在C里面(A、C可视为质点)。木块C放在长木板D的左端,D的质量m3=3kg,长度为L1=0.375m。长木板刚在光滑的水平桌面上,水平桌面的右端有一很薄的与D等高的固定挡板E,D的右端到E距离L2=0.125m,D碰到即被粘牢,C则离开D飞到桌面下方的水平地面上。已知纸筒直径d=30cm,纸筒匀速旋转的角速度,C与D之间的动摩擦因素,木板D的上表面距离地面高H=5m,子弹穿过纸筒的过程中所受的摩擦力和空气阻力忽略不计,取g=10m/s2。求:
(1)若发生子弹的枪有两个档位,可以发射两种初速度不同的子弹,为了让子弹穿过纸筒的时间尽可能短,子弹两个档位的速度大小分别是多少?
(2)在(1)问中,讨论子弹打入C后,整体能否与D达到共同速度,并求出AC整体能与D达到共速情况下AC整体落到地面上距桌边的距离。
如图所示,光滑水平台面MN上放两个相同小物块A、B,右端N处与水平传送带理想连接,传送带水平部分长度L=8m,沿逆时针方向以恒定速度v0=2m/s匀速转动。物块A、B(大小不计,视作质点)与传送带间的动摩擦因数均为μ=0.2,物块A、B质量均为m=1kg。开始时A、B静止,A、B间压缩一轻质短弹簧。现解除锁定,弹簧弹开A、B,弹开后B滑上传送带,A掉落到地面上的Q点,已知水平台面高h=0.8m,Q点与水平台面间右端间的距离S=1.6m,g取10m/s2。
(1)求物块A脱离弹簧时速度的大小;
(2)求弹簧储存的弹性势能;
(3)求物块B在水平传送带上运动的时间。
如图所示,固定点O上系一长L =" 0.6" m的细绳,细绳的下端系一质量m =" 1.0" kg的小球(可视为质点),原来处于静止状态,球与平台的B点接触但对平台无压力,平台高h =" 0.80" m,一质量M =" 2.0" kg的物块开始静止在平台上的P点,现对M施予一水平向右的初速度V0,物块M沿粗糙平台自左向右运动到平台边缘B处与小球m发生正碰,碰后小球m在绳的约束下做圆周运动,经最高点A时,绳上的拉力恰好等于摆球的重力,而M落在水平地面上的C点,其水平位移S =" 1.2" m,不计空气阻力,g ="10" m/s2 ,求:
(1)求物块M碰撞后的速度。
(2)若平台表面与物块间动摩擦因数μ=0.5,物块M与小球的初始距离为S1=1.3m,物块M在P处的初速度大小为多少?
如图所示,一个上表面绝缘、质量为的不带电小车A置于光滑的水平面上,其左端放置一质量为、带电量为的空盒B,左端开口。小车上表面与水平桌面相平,桌面上水平放置着一轻质弹簧,弹簧左端固定,质量为的不带电绝缘小物块C置于桌面上O点并与弹簧的右端接触,此时弹簧处于原长,现用水平向左的推力将缓慢推至M点(弹簧仍在弹性限度内)时,推力做的功为,撤去推力后,沿桌面滑到小车上的空盒B内并与其右壁相碰,碰撞时间极短且碰后C与B粘在一起。在桌面右方区域有一方向向左的水平匀强电场,电场强度大小为,电场作用一段时间后突然消失,小车正好停止,货物刚好到达小车的最右端。已知物块C与桌面间动摩擦因数,空盒B与小车间的动摩擦因数,间距,点离桌子边沿点距离,物块、空盒体积大小不计,取。求:
(1)物块C与空盒B碰后瞬间的速度;
(2)小车的长度L;
(3)电场作用的时间。
如图所示.质量M=2kg的足够长的小平板车静止在光滑水平面上,车的一端静止着质量为MA=2kg的物体A(可视为质点)。一个质量为m=20g的子弹以500m/s的水平速度迅即射穿A后,速度变为100m/s,最后物体A静止在车上。若物体A与小车间的动摩擦因数μ=0.5(g取10m/s2。)
(ⅰ)平板车最后的速度是多大?
(ⅱ)全过程损失的机械能为多少?
(ⅲ)A在平板车上滑行的时间为多少?
有一个竖直固定在地面的透气圆筒,筒中有一劲度系数为的轻弹簧,其下端固定,上端连接一质量为的薄滑块,圆筒内壁涂有一层新型智能材料─—ER流体,它对滑块的阻力可调。起初,滑块静止,ER流体对其阻力为0,弹簧的长度为L.现有一质量也为的物体从距地面2L处自由落下,与滑块碰撞后粘在一起向下运动。为保证滑块做匀减速运动,且下移距离为时速度减为0,ER流体对滑块的阻力须随滑块下移而变。试求(忽略空气阻力):
(1)下落物体与滑块碰撞前的瞬间物体的速度;
(2)下落物体与滑块碰撞过程中系统损失的机械能;
(3)滑块下移距离d时ER流体对滑块阻力的大小。