如图甲所示,平板小车A静止在水平地面上,平板板长L=6m,小物块B静止在平板左端,质量mB = 0.3kg,与A的动摩擦系数μ=0.8,在B正前方距离为S处,有一小球C,质量mC = 0.1kg,球C通过长l = 0.18m的细绳与固定点O相连,恰当选择O点的位置使得球C与物块B等高,且C始终不与平板A接触。在t = 0时刻,平板车A开始运动,运动情况满足如图乙所示SA – t关系。若BC发生碰撞,两者将粘在一起,绕O点在竖直平面内作圆周运动,并能通过O点正上方的最高点。BC可视为质点,g = 10m/s2,
求:(1)BC碰撞瞬间,细绳拉力至少为多少?
(2)刚开始时,B与C的距离S要满足什么关系?
如图所示,质量m1=0.3kg的小车静止在光滑的水平面上,车长L=1.5m,距车的右端d=1.0m处有一固定的竖直挡板P,现有质量为m2=0.2kg可视为质点的物块,以水平向右的速度v0=2m/s从左端滑上小车,物块与车面间的动摩擦因数μ=0.2,取g=10m/s2。
⑴若物块由左端滑上小车开始计时,求经过多长时间小车与挡板P相撞。
⑵若小车与挡板碰撞将以原速率反弹,最终小物块在车面上某处与小车保持相对静止,求此处与车左端的距离L。
如图所示,在倾角θ=30º的斜面上放置一段凹槽B,B与斜面间的动摩擦因数μ=,槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离
d=0.10m。A、B的质量都为m=2.0kg,B与斜面间的最大静摩擦力可认为等于滑动摩擦力,不计A、B之间的摩擦,斜面足够长。现同时由静止释放A、B,经过一段时间,A与B的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短。取g=10m/s2。求:
(1)画出凹槽B运动的速度v随时间t的变化图象;
(2)物块A与凹槽B的左侧壁第n次碰撞后瞬间A、B的速度大小;
(3)从初始位置到物块A与凹槽B的左侧壁发生第n次碰撞时B的位移大小。
有一长度为l="1" m的木块A,放在足够长的水平地面上.取一无盖长方形木盒万将A罩住,B的左右内壁间的距离为L="9" m. A,B质量相同均为m="1" kg,与地面间的动摩擦因数分别为开始时A与B的左内壁接触,两者以相同的初速度v0 =" 28" rn/s向右运动.已知A与B的左右内壁发生的碰撞时间极短(可忽略不计),且碰撞后A,B互相交换速度.A与B的其它侧面无接触.重力加速度g="10" m/ s2.求:
(1)开始运动后经过多长时间A,B发生第一次,碰撞;
(2)从开始运动到第二次碰撞碰后摩擦产生的热能;
(3)若仅v0未知,其余条件保持不变,(a)要使A,B最后同时停止,而且A与B轻轻接触,初速度场应满足何条件?(b)要使B先停下,且最后全部停下时A运动至B右壁刚好停止,初速度v0应满足何条件?
如图所示,在光滑的水平地面上,静止着质量为M =2.0kg的小车A,小车的上表面距离地面的高度为0.8m,小车A的左端叠放着一个质量为m=1.0kg的小物块B(可视为质点)处于静止状态,小物块与小车上表面之间的动摩擦因数μ=0.20。在小车A的左端正上方,用长为R=1.6m的不可伸长的轻绳将质量为m =1.0kg的小球C悬于固定点O点。现将小球C拉至使轻绳拉直且与竖起方向成θ=60°角的位置由静止释放,到达O点的正下方时,小球C与B发生弹性正碰(碰撞中无机械能损失),小物块从小车右端离开时车的速度为1m/s,空气阻力不计,取g=10m/s2. 求:
(1)小车上表面的长度L是多少?
(2)小物块落地时距小车右端的水平距离是多少?
质量为0.1 kg 的弹性球从空中某高度由静止开始下落经0.5s落至地面,该下落过程对应的图象如图所示.球与水平地面相碰后离开地面时的速度大小为碰撞前的3/4.设球受到的空气阻力大小恒为f,取="10" m/s2, 求:
(1)弹性球受到的空气阻力f的大小;
(2)弹性球第一次碰撞后反弹的高度h.
如图所示,质量为M=0.9Kg的光滑长木板静止在光滑水平地面上,左端固定一劲度系数为k=1000N/m的水平轻质弹簧,右侧用一不可伸长的细绳连接于竖直墙上,细绳所能承受的最大拉力为50N,使一质量为m=0.1Kg小物体,以一定的初速度在木板上无摩擦地向左滑动而后压缩弹簧,细绳被拉断,不计细绳被拉断时的能量损失.弹簧的弹性势能表达式为Ep=kx2(k为弹簧的劲度系数,x为弹簧的形变量).
(1)要使细绳被拉断,v0应满足怎样的条件;
(2)若小物体的初速度,长木板在细绳拉断后被加速的过程中,所能获得的最大加速度时,求小物体的速度;
(3)若小物体最后离开长木板时相对地面速度恰好为零,请在坐标系中定性画出从小物体接触弹簧到与弹簧分离的过程小物体的v-t图象.
如图所示,质量为M、半径为R的质量分布均匀的圆环静止在粗糙的水平桌面上,一质量为m(m>M)的光滑小球以某一水平速度通过环上的小孔正对环心射入环内,与环发生第一次碰撞后到第二次碰撞前小球恰好不会从小孔中穿出。假设小球与环内壁的碰撞为弹性碰撞,只考虑圆环与桌面之间的摩擦,求圆环通过的总位移?
一质量为2m的物体P静止于光滑水平地面上,其截面如图所示.图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接.现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静止.重力加速度为g.求:
(1)木块在ab段受到的摩擦力Ff;
(2)木块最后距a点的距离s.
如图所示,半径为R的 1/4光滑圆弧轨道最低点D与水平面相切,在D点右侧L0=4R处用长为R的细绳将质量为m的小球B(可视为质点)悬挂于O点,小球B的下端恰好与水平面接触,质量为m的小球A(可视为质点)自圆弧轨道C的正上方H高处由静止释放,恰好从圆弧轨道的C点切入圆弧轨道,已知小球A与水平面间的动摩擦因数μ=0.5,细绳的最大张力Fm=7mg,重力加速度为g,试求:
(1)若H=R,小球A到达圆弧轨道最低点D时所受轨道的支持力;
(2)试讨论H在什么范围内,小球A与B发生弹性碰撞后细绳始终处于拉直状态。
(1)如图所示,用某单色光照射光电管的阴板K,会发生光电效应.在阳极A和阴极K之间加上反向电压,通过调节滑动变阻器的滑片逐渐增大加在光电管上的电压,直至电流表中电流恰为零,此时电压表的电压值U称为反向截止电压,现分别用频率为和的单色光照射阴极,测得反向截止电压分别为U1和U2.设电子的质量为m、电荷量为e,,下列说法正确的是 .(选对1个给3分,选对2个给4分,选对3个给6分,每选错1个扣3分,最低得分为0分)
A.频率为的光照射时,光电子的最大初速度为 |
B.频率为的光照射时,光电子的最大初速度为 |
C.阴极K金属的逸出功为 |
D.普朗克常数 |
E.阴极K金属的极限频率是
(2)如图所示,A、B两球质量均为m,其间有压缩的轻短弹簧处于锁定状态(A、B两球与弹簧两端接触但不连接).弹簧的长度、两球的大小均忽略,整体视为质点,该装置从半径为R的竖直光滑圆轨道左侧与圆心等高处由静止下滑,滑至最低点时,解除对弹簧的锁定状态之后,B球恰好能到达轨道最高点,求:
①小球B解除锁定后的速度
②弹簧处于锁定状态时的弹性势能
如图所示,在光滑的水平地面上,静止着质量为M =2.0kg的小车A,小车的上表面距离地面的高度为0.8m,小车A的左端叠放着一个质量为m=1.0kg的小物块B(可视为质点)处于静止状态,小物块与小车上表面之间的动摩擦因数μ=0.20。在小车A的左端正上方,用长为R=1.6m的不可伸长的轻绳将质量为m =1.0kg的小球C悬于固定点O点。现将小球C拉至使轻绳拉直且与竖起方向成θ=60°角的位置由静止释放,到达O点的正下方时,小球C与B发生弹性正碰(碰撞中无机械能损失),小物块从小车右端离开时车的速度为1m/s,空气阻力不计,取g=10m/s2. 求:
(1)小车上表面的长度L是多少?
(2)小物块落地时距小车右端的水平距离是多少?
如甲图所示,水平光滑地面上用两颗钉子(质量忽略不计)固定停放着一辆质量为M=3kg的小车,小车的四分之一圆弧轨道是光滑的,半径为R=0.5m,在最低点B与水平轨道BC相切,视为质点的质量为m=1kg的物块从A点正上方距A点高为h=0.3m处无初速下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道滑行恰好停在轨道末端C。
现去掉钉子(水平面依然光滑未被破坏)不固定小车,而让其左侧靠在竖直墙壁上,该物块仍从原高度处无初速下落,如乙图所示。
不考虑空气阻力和物块落入圆弧轨道时的能量损失,已知物块与水平轨道BC间的动摩擦因数为μ=0.2
求:(1)水平轨道BC长度;
(2)小车固定时物块到达圆弧轨道最低点B时对轨道的压力;
(3)小车不固定时物块再次停在小车上时距小车B点的距离;
(4)两种情况下由于摩擦系统产生的热量之比。
如图所示,一个可视为质点的小球从距地面125高的A处开始自由下落,到达地面O点后经过地面反弹上升到最大高度为45的B处,已知AO、OB在同一直线上,不计空气阻力,,求:
(1)小球下落的时间为多少?小球从A点下落再反弹至B点全程位移为多少?
(2)小球经过地面反弹后瞬间的速度为多大?
(3)小球下落时最后1秒内的位移为多少?
如图,长度S=2m的粗糙水平面MN的左端M处有一固定挡板,右端N处与水平传送带平滑连接.传送带以一定速率v逆时针转动,其上表面NQ间距离为L=3m.可视为质点的物块A和B紧靠在一起并静止于N处,质量mA=mB=1kg.A、B在足够大的内力作用下突然分离,并分别向左、右运动,分离过程共有能量E=9J转化为A、B的动能.设A、B与传送带和水平面MN间的动摩擦因数均为μ=0.2,与挡板碰撞均无机械能损失.取重力加速度g=10m/s2,求:
(1)分开瞬间A、B的速度大小;
(2)B向右滑动距N的最远距离;
(3)要使A、B不能再次相遇,传送带速率的取值范围.