高中物理

如图所示,将质量为2m的长木板静止地放在光滑水平面上,一质量为m的小铅块(可视为质点)以水平初速v0由木板A端滑上木板,铅块滑至木板的B端时恰好与木板相对静止.已知铅块在滑动过程中所受摩擦力始终不变.若将木板分成长度与质量均相等的两段后,紧挨着静止放在此水平面上,让小铅块仍以相同的初速v0由左端滑上木板,则小铅块将 (   )

A.滑过B端后飞离木板
B.仍能滑到B端与木板保持相对静止
C.在滑到B端前就与木板保持相对静止
D.以上三答案均有可能
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,一轻弹簧左端固定在长木板M的左端,右端与小木块m连接,且m、M及M与地面间接触光滑.开始时,m和M均静止,现同时对m、M施加等大反向的水平恒力F1和F2,从两物体开始运动以后的整个运动过程中,弹簧形变不超过其弹性限度,对于m、M和弹簧组成的系统

A.由于F1、F2等大反向,故系统机械能守恒
B.当弹簧弹力大小与F1、F2大小相等时,m、M各自的动能最大
C.由于F1、F2大小不变,所以m、M各自一直做匀加速运动
D.由于F1、F2等大反向,故系统的动量始终为零
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,长度S=2m的粗糙水平面MN的左端M处有一固定挡板,右端N处与水平传送带平滑连接.传送带以一定速率v逆时针转动,其上表面NQ间距离为L=3m.可视为质点的物块A和B紧靠在一起并静止于N处,质量mA=mB=1kg.A、B在足够大的内力作用下突然分离,并分别向左、右运动,分离过程共有能量E=9J转化为A、B的动能.设A、B与传送带和水平面MN间的动摩擦因数均为μ=0.2,与挡板碰撞均无机械能损失.取重力加速度g=10m/s2,求:

(1)分开瞬间A、B的速度大小;
(2)B向右滑动距N的最远距离;
(3)要使A、B不能再次相遇,传送带速率的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,有一内表面光滑的金属盒,底面长为L=1.2m,质量为m1=1kg,放在水平面上,与水平面间的动摩擦因数为μ=0.2,在盒内最右端放一半径为r=0.1m的光滑金属球,质量为m2=1kg,现在盒的左端,给盒一个初速度v=3m/s(盒壁厚度,球与盒发生碰撞的时间和能量损失均忽略不计,g取10m/s2)求:金属盒从开始运动到最后静止所经历的时间?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在光滑水平地面上有一质量为2m的长木板,其左端放有一质量为m的重物(可视为质点),重物与长木板之间的动摩擦因数为。开始时,长木板和重物都静止,现在给重物一初速度v0,已知长木板撞到前方固定的障碍物时,长木板和重物的速度恰好相等,长木板与障碍物发生碰撞时不损失机械能,重物始终不从长木板上掉下来。

(1)求长木板与前方固定的障碍物相撞时的速度的大小;
(2)求长木板撞到前方固定的障碍物前运动的位移大小;
(3)求重物最终在长木板上相对滑动的距离大小。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,滑块的质量m1="0.1" kg,用长为L的细线悬挂质量为m2="0.1" kg的小球,小球可视为质点,滑块与水平地面间及滑块与传送带间的动摩擦因数均为μ=0.2,滑块到小球及小球到传送带的距离均为s="2" m,传送带以v=4m/s的恒定速度匀速逆时针转动,传送带足够长。开始时,滑块以速度v0="8" m/s沿水平方向向右运动,并与小球发生弹性正碰,碰后小球能在竖直平面内做完整的圆周运动。问:

(1)细线长度L应该满足什么条件?
(2)若碰撞后小球恰能在竖直平面内完成完整的圆周运动并再次与滑块弹性正碰,则滑块与小球第一次碰撞后瞬间,悬线对小球的拉力多大?
(3)滑块从滑上传送带到从传送带上滑下,一共产生多少热量?(重力加速度g=10m/s2

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,质量M=3.5kg的小车静止于光滑水平面上靠近桌子处,其上表面与水平桌面相平,小车长L=1.2m,其左端放有一质量为0.5kg的滑块Q。水平放置的轻弹簧左端固定,质量为1kg的小物块P置于桌面上的A点并与弹簧的右端接触。此时弹簧处于原长,现用水平向左的推力将P缓慢推至B点(弹簧仍在弹性限度内)时,推力做的功为WF=6J,撤去推力后,P沿桌面滑到小车上并与Q相碰,最后Q停在小车的右端,P停在距小车左端0.5m处。已知AB间距L1=5cm,A点离桌子边沿C点距离L2=90cm,P与桌面间动摩擦因数,P、Q与小车表面间动摩擦因数。(g=10m/s2)求:

(1)P到达C点时的速度 vC
(2)P与Q碰撞后瞬间Q的速度大小。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

有人设想:可以在飞船从运行轨道进入返回地球程序时,借飞船需要减速的机会,发射一个小型太空探测器,从而达到节能的目的。如图所示,飞船在圆轨道Ⅰ上绕地球飞行,其轨道半径为地球半径的k倍(k>1)。当飞船通过轨道Ⅰ的A点时,飞船上的发射装置短暂工作,将探测器沿飞船原运动方向射出,并使探测器恰能完全脱离地球的引力范围,即到达距地球无限远时的速度恰好为零,而飞船在发射探测器后沿椭圆轨道Ⅱ向前运动,其近地点B到地心的距离近似为地球半径R。以上过程中飞船和探测器的质量均可视为不变。已知地球表面的重力加速度为g。

(1)求飞船在轨道Ⅰ运动的速度大小;
(2)若规定两质点相距无限远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能,式中G为引力常量。在飞船沿轨道Ⅰ和轨道Ⅱ的运动过程,其动能和引力势能之和保持不变;探测器被射出后的运动过程中,其动能和引力势能之和也保持不变。
①求探测器刚离开飞船时的速度大小;
②已知飞船沿轨道Ⅱ运动过程中,通过A点与B点的速度大小与这两点到地心的距离成反比。根据计算结果说明为实现上述飞船和探测器的运动过程,飞船与探测器的质量之比应满足什么条件。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

甲图是我国自主研制的200mm离子电推进系统, 已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器。离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势。离子推进器的工作原理如图乙所示,推进剂氙原子P喷注入腔室C后,被电子枪G射出的电子碰撞而电离,成为带正电的氙离子。氙离子从腔室C中飘移过栅电极A的速度大小可忽略不计,在栅电极A、B之间的电场中加速,并从栅电极B喷出。在加速氙离子的过程中飞船获得推力。
已知栅电极A、B之间的电压为U,氙离子的质量为m、电荷量为q。

(1)将该离子推进器固定在地面上进行试验。求氙离子经A、B之间的电场加速后,通过栅电极B时的速度v的大小;
(2)配有该离子推进器的飞船的总质量为M,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B。推进器工作时飞船的总质量可视为不变。求推进器在此次工作过程中喷射的氙离子数目N。
(3)可以用离子推进器工作过程中产生的推力与A、B之间的电场对氙离子做功的功率的比值S来反映推进器工作情况。通过计算说明采取哪些措施可以增大S,并对增大S的实际意义说出你的看法。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,一质量m1=1kg半径R=0.8m的光滑四分之一圆弧滑槽AB,固定于光滑水平台面上,现有可视为质点的滑块m2=15kg,从滑槽顶端A点静止释放,到达底端B后滑上与水平台面等高的水平传送带CD,传送带固定不转动时,滑块恰能到达D端,已知传送带CD的长L=4m,g取10m/s2

(1)滑块滑到圆弧底端B点时对滑槽的压力多大?滑块从C到D需要多长时间?
(2)如果滑槽不固定,滑块滑到圆弧底端B时的速度多大?
(3)如果滑槽不固定,如果滑槽不固定,为使滑块从C到D历时与第一问相同,传送带应以多大的速度匀速转动?(答案可用根号表示)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,空间存在着方向竖直向上的匀强电场和方向垂直于纸面向内,磁感应强度大小为B的匀强磁场,带电量为+q、质量为m的小球Q静置在光滑绝缘的水平高台边缘,另一质量为m不带电的绝缘小球P以水平初速度v0向Q运动,小球P、Q正碰过程中没有机械能损失且电荷量不发生转移,已知匀强电场的电场强度E=,水平台面距离地面高度,重力加速度为g,不计空气阻力。

(1)求P、Q两球首次发生弹性碰撞后,小球Q的速度大小;
(2)P、Q两球首次发生弹性碰撞后,经多少时间小球P落地,落地点与平台边缘间的水平距离多大?
(3)若撤去匀强电场,并将小球Q重新放在平台边缘,小球P仍以水平初速度向Q运动,小球Q的运动轨迹如图所示,已知Q球在最高点和最低点所受全力的大小相等,求小球Q在运动过程中的最大速度和第一次下降的最大距离H。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数=0.3,OB部分光滑。另一小物块a.放在车的最左端,和车一起以Vo=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连。已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内。a、b两物块视为质点质量均为m=lkg,碰撞时间极短且不粘连,碰后一起向右运动。(取g="10" m/s2)求:

(1)物块a与b碰后的速度大小;
(2)当物块a相对小车静止时小车右端B到挡板的距离;
(3)当物块a相对小车静止时在小车上的位置到O点的距离。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,光滑水平台面MN上放两个相同小物块A、B,右端N处与水平传送带理想连接,传送带水平部分长度L=8m,沿逆时针方向以恒定速度v0=2m/s匀速转动。物块A、B(大小不计,视作质点)与传送带间的动摩擦因数均为μ=0.2,物块A、B质量均为m=1kg。开始时A、B静止,A、B间压缩一轻质短弹簧。现解除锁定,弹簧弹开A、B,弹开后B滑上传送带,A掉落到地面上的Q点,已知水平台面高h=0.8m,Q点与水平台面间右端间的距离S=1.6m,g取10m/s2

(1)求物块A脱离弹簧时速度的大小;
(2)求弹簧储存的弹性势能;
(3)求物块B在水平传送带上运动的时间。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,水平放置的轻质弹簧左端与竖直墙壁相连,右侧与质量的小物块甲相接触但不粘连,B点为弹簧自由端,光滑水平面AB与倾角的倾斜面BC在B处平滑连接,OCD在同一条竖直线上,CD右端是半径光滑圆弧,斜面BC与圆弧在C处也平滑连接,物块甲与斜面BC间的动摩擦因数。现用力将物块甲缓慢向左压缩弹簧,使弹簧获得一定能量后撤去外力,物块甲刚好能滑到C点,与此同时用长的细线悬挂于O点的小物块乙从图示位置静止释放,,物块乙到达C点时细线恰好断开且与物块甲发生正碰,碰撞后物块甲恰好对圆弧轨道无压力,物块乙恰好从图中P点离开圆弧轨道,取,求:

(1)撤去外力时弹簧的弹性势能
(2)小物块乙的质量M和细线所能承受的最大拉力
(3)两物块碰撞过程中损失的能量
(4)小物块乙落到水平面上时的速度大小(保留一位有效数字)。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A点由静止出发绕O点下摆,当摆到最低点B时,女演员在极短时间内将男演员沿水平方向推出,然后自已刚好能乘秋千回到A点,而男演员则落到地面上的C点。已知男演员质量为m,秋千的质量不计,秋千的摆长为R,C点与O点的竖直距离为5R,C点与O点的水平距离为8R,重力加速度为g,空气阻力不计。求:

(1)男、女演员到达秋千最低点B时的速度大小;
(2)男、女演员刚分离时各自的速度大小
(3)女演员在极短时间内将男演员推出的过程中对男演员所做的功。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中物理电荷守恒定律试题