如图所示,木板A长L="6" m,质量为M=8kg,在水平面上向右做直线运动。某时刻木板A速度vo="6" m/s,在此时刻对木板A施加一个方向水平向左的恒力F=32N,与此同时,将一个质量m="2" kg的小物块B轻放在木板A上的P点(小物块可视为质点,放在P点时相对于地面的速度为零),P点到木板A右端距离为lm,木板A与地面间的动摩擦因数为0.16,其他摩擦均不计.取g="10" m/s2.求:
(1)小物块B从轻放到木板A上开始,经多长时间两者同速?
(2)小物块B从轻放到木板A上开始至离开木板A的过程,恒力F对木板A所做的功及小物块B离开木板A时木板A的速度?
导体切割磁感线的运动可以从宏观和微观两个角度来认识。如图所示,固定于水平面的U形导线框处于竖直向下的匀强磁场中,金属直导线在与其垂直的水平恒力
的作用下,在导线框上以速度
做匀速运动,速度
与恒力
方向相同,导线
始终与导线框形成闭合电路,已知导线
电阻为
,其长度
,恰好等于平行轨道间距,磁场的磁感应强度为
,忽略摩擦阻力和导线框的电阻。
(1)通过公式推导验证:在时间内,也等于导线
中产生的焦耳热
。
(2)若导线的质量=8.0
,长度
=0.1
,感应电流
=1.0
,假设一个原子贡献1个自由电子,计算导线
中电子沿导线长度方向定向移动的平均速率
(下表中列出了一些你可能用到的数据)。
(3)经典物理学认为,金属的电阻源于定向运动自由电子和金属离子(金属原子失去电子后剩余部分)的碰撞,展开你想象的翅膀,给出一个合理的自由电子运动模型:在此基础上,求出导线中金属离子对一个自由电子沿导线长度方向的平均作用力
的表达式。
如图甲所示,长木板A静止在光滑的水平面上,质量m=2 kg的物体B以v0=2 m/s的水平速度滑上A的表面,由于A、B间存在摩擦,之后A、B速度随时间变化情况如图乙所示,则下列说法中不正确的是 ( )
A.木板获得的动能为1 J
B.系统损失的机械能为2 J
C.木板A的最小长度为1 m
D.A、B间的动摩擦因数为0.2
如图所示,固定在竖直平面内半径为R的四分之一光滑圆弧轨道与水平光滑轨道平滑连接,A、B、C三个滑块质量均为m,B、C带有同种电荷且相距足够远,静止在水平轨道上的图示位置。不带电的滑块A从圆弧上的P点由静止滑下(P点处半径与水平面成300角),与B发生正碰并粘合,然后沿B、C两滑块所在直线向C滑块运动。
求:①A、B粘合后的速度大小;
②A、B粘合后至与C相距最近时系统电势能的变化。
雨滴在空中下落时,由于空气阻力的影响,最终会以恒定的速度匀速下降,我们把这个速度叫做收尾速度。研究表明,在无风的天气条件下,空气对下落雨滴的阻力可由公式来计算,其中C为空气对雨滴的阻力系数(可视为常量),ρ为空气的密度,S为雨滴的有效横截面积(即垂直于速度v方向的横截面积)。
假设雨滴下落时可视为球形,且在到达地面前均已达到收尾速度。每个雨滴的质量均为m,半径均为R,雨滴下落空间范围内的空气密度为ρ0,空气对雨滴的阻力系数为C0,重力加速度为g。
(1)求雨滴在无风的天气条件下沿竖直方向下落时收尾速度的大小;
(2)若根据云层高度估测出雨滴在无风的天气条件下由静止开始竖直下落的高度为h,求每个雨滴在竖直下落过程中克服空气阻力所做的功;
(3)大量而密集的雨滴接连不断地打在地面上,就会对地面产生持续的压力。设在无风的天气条件下雨滴以收尾速度匀速竖直下落的空间,单位体积内的雨滴个数为n(数量足够多),雨滴落在地面上不反弹,雨滴撞击地面时其所受重力可忽略不计,求水平地面单位面积上受到的由于雨滴对其撞击所产生的压力大小。
在空中某一位置,以大小v0的速度水平抛出一质量为m的物体,经时间t物体下落一段距离后,其速度大小仍为v0,但方向与初速度相反,如图所示,则下列说法中错误的是
A.风力对物体做功为零 |
B.风力对物体做负功 |
C.物体机械能减少mg2t2/2 |
D.风力对物体的冲量大小为2mv0 |
如图所示,PQ和MN是固定于水平面内的平行光滑金属轨道,轨道足够长,其电阻可忽略不计。金属棒ab、cd放在轨道上,始终与轨道垂直,且接触良好。金属棒ab、cd的质量均为m,长度均为L。两金属棒的长度恰好等于轨道的间距,它们与轨道形成闭合回路。金属棒ab的电阻为2R,金属棒cd的电阻为R。整个装置处在竖直向上、磁感应强度为B的匀强磁场中。
(1)若保持金属棒ab不动,使金属棒cd在与其垂直的水平恒力F作用下,沿轨道以速度v做匀速运动。试推导论证:在Δt时间内,F对金属棒cd所做的功W等于电路获得的电能E电;
(2)若先保持金属棒ab不动,使金属棒cd在与其垂直的水平力F′(大小未知)作用下,由静止开始向右以加速度a做匀加速直线运动,水平力F′作用t0时间撤去此力,同时释放金属棒ab。求两金属棒在撤去F′后的运动过程中,
①金属棒ab中产生的热量;
②它们之间的距离改变量的最大值Dx。
将甲.乙两个质量相等的物体在距水平地面同一高度处,分别以v和2v的速度水平抛出,若不计空气阻力的影响,则
A.甲物体在空中运动过程中,任何相等时间内它的动能变化都相同 |
B.甲物体在空中运动过程中,任何相等时间内它的动量变化都相同 |
C.两物体落地前瞬间动量对时间的变化率相同 |
D.两物体落地前瞬间重力做功的功率相同 |
如图所示,一物体从光滑固定斜面顶端由静止开始下滑。已知物体的质量m=0.50kg,斜面的倾角θ=30°,斜面长度L=2.5m,取重力加速度g=10m/s2。求:
(1)物体沿斜面由顶端滑到底端所用的时间;
(2)物体滑到斜面底端时的动能;
(3)在物体下滑的全过程中支持力对物体的冲量大小。
如图所示,有一内表面光滑的金属盒,底面长为L=1.2m,质量为m1=1kg,放在水平面上,与水平面间的动摩擦因数为μ=0.2,在盒内最右端放一半径为r=0.1m的光滑金属球,质量为m2=1kg,现在盒的左端,给盒一个初速度v=3m/s(盒壁厚度,球与盒发生碰撞的时间和能量损失均忽略不计,g取10m/s2)求:金属盒从开始运动到最后静止所经历的时间?
如图所示,直角坐标系xoy位于竖直平面内,y轴正方向竖直向上,x轴正方向水平向右。空间中存在相互垂直的匀强电场和匀强磁场,匀强磁场垂直xoy平面向里,磁感应强度大小为B。匀强电场(图中未画出)方向平行于xoy平面,小球(可视为质点)的质量为m、带电量为+q,已知电场强度大小为,g为重力加速度。
(1)若匀强电场方向水平向左,使小球在空间中做直线运动,求小球在空间中做直线运动的速度大小和方向;
(2)若匀强电场在xoy平面内的任意方向,确定小球在xoy平面内做直线运动的速度大小的范围;
(3)若匀强电场方向竖直向下,将小球从O点由静止释放,求小球运动过程中距x轴的最大距离。
如图所示,质量为m=1kg的滑块,以υ0=5m/s的水平初速度滑上静止在光滑水平面的平板小车,若小车质量M=4kg,平板小车足够长,滑块在平板小车上滑移1s后相对小车静止。求:(g取10m/s2)
(1)滑块与平板小车之间的滑动摩擦系数μ; (2)此时小车在地面上滑行的位移?
如图所示,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度B=1T,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d=0.5m,现有一边长l=0.2m、质量m=0.1kg、电阻R=0.1Ω的正方形线框MNOP以v0=7m/s的初速从左侧磁场边缘水平进入磁场,求:
(1)线框从开始进入磁场到竖直下落的过程中产生的焦耳热Q。
(2)线框能穿过的完整条形磁场区域的个数n。
如图所示,空间存在着方向竖直向上的匀强电场和方向垂直于纸面向内,磁感应强度大小为B的匀强磁场,带电量为+q、质量为m的小球Q静置在光滑绝缘的水平高台边缘,另一质量为m不带电的绝缘小球P以水平初速度v0向Q运动,小球P、Q正碰过程中没有机械能损失且电荷量不发生转移,已知匀强电场的电场强度E=
,水平台面距离地面高度
,重力加速度为g,不计空气阻力。
(1)求P、Q两球首次发生弹性碰撞后,小球Q的速度大小;
(2)P、Q两球首次发生弹性碰撞后,经多少时间小球P落地,落地点与平台边缘间的水平距离多大?
(3)若撤去匀强电场,并将小球Q重新放在平台边缘,小球P仍以水平初速度向Q运动,小球Q的运动轨迹如图所示,已知Q球在最高点和最低点所受全力的大小相等,求小球Q在运动过程中的最大速度和第一次下降的最大距离H。
电磁阻尼制动是一种利用电磁感应原理工作的新型制动方式,它的基本原理如图甲所示。水平面上固定一块铝板,当一竖直方向的条形磁铁在铝板上方几毫米高度上水平经过时,铝板内感应出的电流会对磁铁的运动产生阻碍作用。电磁阻尼制动是磁悬浮列车在高速运行时进行制动的一种方式,某研究所制成如图乙所示的车和轨道模型来定量模拟磁悬浮列车的制动过程。车厢下端安装有电磁铁系统,能在长为L1=0.6m,宽L2=0.2m的矩形区域内产生竖直方向的匀强磁场,磁感应强度可随车速的减小而自动增大(由车内速度传感器控制),但最大不超过B1=2T,将铝板简化为长大于L1,宽也为L2的单匝矩形线圈,间隔铺设在轨道正中央,其间隔也为L2,每个线圈的电阻为R1=0.1Ω,导线粗细忽略不计。在某次实验中,模型车速度为v0=20m/s时,启动电磁铁系统开始制动,车立即以加速度a1=2m/s2做匀减速直线运动,当磁感应强度增加到B1时就保持不变,直到模型车停止运动。已知模型车的总质量为m1=36kg,空气阻力不计。不考虑磁感应强度的变化引起的电磁感应现象以及线圈激发的磁场对电磁铁产生磁场的影响。
(1)电磁铁的磁感应强度达到最大时,模型车的速度v1为多大?
(2)模型车的制动距离为多大?
(3)某同学受到上述装置的启发,设计了进一步提高制动效果的方案如下,将电磁铁换成多个并在一起的永磁铁组,两个相邻的磁铁磁极的极性相反,且将线圈改为连续铺放,相邻线圈接触紧密但彼此绝缘,如图丙所示,若永磁铁激发的磁感应强度恒定为B2,模型车质量m1及开始减速的初速度v0均不变,试通过必要的公式分析这种设计在提高制动能力上的合理性。