如图6—5—2所示,直径为d的纸质圆筒,以角速度ω绕轴O高速运动,有一颗子弹沿直径穿过圆筒,若子弹穿过圆筒时间小于半个周期,在筒上先、后留下a、b两个弹孔,已知ao、bo间夹角为φ弧度,则子弹速度是多少?
如图6—5—6所示,小球Q在竖直平面内做匀速圆周运动,当Q球转到图示位置时,有另一小球P在距圆周最高点为h处开始自由下落,要使两球在圆周最高点相碰,则Q球的角速度ω应满足什么条件?
如图甲所示,将质量为m的两个小球(可看成质点),用长为L的两根细软线拴连,线的上端连于O点且绕O点自由转动时与竖直方向夹角为θ。
如图乙所示,将其中一质量为m的小球仍与一长为L的细绳连接,放在表面光滑的正圆锥体表面,上端可绕圆锥顶点自由转动。圆锥体放在水平面上,其轴线沿竖直方向,圆锥母线与轴线之间夹角α为30°,试求:
(1)图甲中小球圆周运动的周期T=?
(2)图乙中当正圆锥体沿水平x轴方向匀加速运动的加速度a多大时,小球刚要离开锥面?
(3)将图乙中与小球相连的细线穿过圆锥顶端的光滑小圆环后,与放在倾角β=37°的对称斜槽(斜槽两平面材料相同,与竖直面都成30°)里的质量为M的圆柱体相连,连接圆柱的细线平行斜槽的棱,如图丙所示。当小球以速度v=绕圆锥轴线做水平匀速圆周运动而圆柱M不动时,圆柱与两接触面间的摩擦因数μ至少多大?
求:(l)推导第一宇宙速度v1的表达式;
(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,求卫星的运行周期T。
(1)已知第一种形式中的每颗恒星质量均为m,正方形边长为L,求其中一颗恒星受到的合力;
(2)已知第二种形式中的两外侧恒星质量均为m、两内侧恒星质最均为M ,四颗恒星始终位于同一直线,且相邻恒星之间距离相等,求内侧恒星质量M与外侧恒质m的比值。
有一个圆盘能够在水平面内绕其圆心O匀速旋转,盘的边缘为粗糙平面(用斜线表示)其余为光滑平面。现用很轻的长L="5" cm的细杆连接A、B两个物体(看做质点),A、B的质量分别为mA="0.1" kg和mB="0.5" kg,B放在圆盘的粗糙部分,A放在圆盘的光滑部分。并且细杆指向圆心,A离圆心O为10cm,如图所示,当圆盘以n=2转/秒的转速转动时,A和B能跟着一起作匀速圆周运动。()求:
(1)B受到的摩擦力的大小。
(2)细杆所受的作用力。
钢铁质量为的超重车,行驶在半径为厅的圆弧形拱桥顶点,已知此处桥面能承受的最大压力只是车重的倍;要使车能安全沿桥面行驶,求在此处车的速度应在什么范围内?
如图所示,一个光滑的圆锥体固定在水平圆盘上,其轴线沿竖直方向并与圆盘中心重合,母线与轴线之间的夹角为θ. 一条长为L的细绳,一端固定在圆锥体的顶点O处,另一端拴着一质量为m的小球(可视为质点). 现让圆锥体绕其中心轴线由静止开始转动,求当其角速度由零增大到且稳定时的过程中,细绳的拉力对小球所做的功.
OA杆是机器带动绕其轴线旋转的竖直杆,细绳的一端固定在杆的A点,另一端系一质量m="1" kg的小球,绳长为L="1" m.开始小球绕轴线在水平面内做匀速圆周运动,细绳与竖直杆的夹角为θ1=30°.现使机器转速加大,使小球在另一水平面内做稳定的匀速圆周运动时,细绳与竖直杆的夹角为θ2=60°.求此过程中机器对小球所做的功.(取g="10" m/s2)
如图2,用手握着一绳端在水平桌面上做半径为r的匀速圆周运动,圆心为O,角速度为ω。绳长为l,方向与圆相切,质量可以忽略。绳的另一端系着一个质量为m的小球,恰好也沿着一个以O点为圆心的大圆在桌面上运动,小球和桌面之间有摩擦,试求:
⑴ 手对细绳做功的功率P;
⑵ 小球与桌面之间的动摩擦因数μ。
如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求
⑴当圆盘转动的角速度ω=2rad/s时,物块与圆盘间的摩擦力大小多大?方向如何?
⑵欲使A与盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(取g=10m/s2)
长为L的细线,拴一质量为m的小球,一端固定于O点,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,当摆线L与竖直方向的夹角是α时,求:
(1)线的拉力F;
(2)小球运动的线速度的大小;
(3)小球运动的角速度及周期。
如图所示,半径为R的圆板做匀速运动,当半径OB转到某一方向时,在圆板中心正上方h处以平行于OB方向水平抛出一球,小球抛出时的速度及圆盘转动的角速度为多少时,小球与圆盘只碰撞一次,且落点为B。