现要组装一个由热敏电阻控制的报警系统,当要求热敏电阻的温度达到或超过 C时,系统报警。提供的器材有:热敏电阻,报警器(内阻很小,流过的电流超过 时就会报警,电阻箱(最大阻值为 ),直流电源(输出电压为 ,内阻不计),滑动变阻器 (最大阻值为 ), 滑动变阻器 (最大阻值为 ),单刀双掷开关一个,导线若干。
在室温下对系统进行调节,已知 约为 约为 ;流过报警器的电流超过 时,报警器可能损坏;该热敏电阻的阻值随温度的升高而减小,在 时阻值为 。
(1) 在答题卡上完成待调节的报警系统原理电路图的连线。
(2)在电路中应选用滑动变阻器_ (填 或" ") 。
(3)按照下列步骤调节此报警系统:
①电路接通前, 需将电阻箱调到一定的阻值, 根据实验要求, 这一阻值为 ; 滑动变阻器的滑片应置于 _ (填"a"或"b") 端附近,不能置于另一端的原因是 。
②将开关向 (填 "c"或 "d") 端闭合,缓慢移动滑动变阻器的滑片, 直至 。
(4)保持滑动变阻器滑片的位置不变, 将开关向另一端闭合,报警系统即可正常使用。
某同学用图(a)所示的实验装置验证机械能守恒定律, 其中打点计时器的电源为 交流电源, 可以使用的频率有 和 , 打出纸带的一部分如图(b)所示。
该同学在实验中没有记录交流电的频率 , 需要用实验数据和其他条件进行推算。
(1) 若从打出的纸带可判定重物匀加速下落, 利用 和图(b)中给出的物理量可以写出: 在打点计时器打出 B 点时,重物下落的速度大小为 ,打出 点时重物下落的速度大小为 , 重物下落的加速度的大小为_ 。
(2) 已测得 , ; 当重力加速度大小为 , 试验中重 物受到的平均阻力大小约为其重力的 。由此推算出 为_
甲、乙两车在平直公路上同向行驶,其 图像如图所示。已知两车在 时并排行驶,则( )
A. |
在 时, 甲车在乙车后 |
B. |
在 时, 甲车在乙车前 |
C. |
两车另一次并排行驶的时刻是 |
D. |
甲、乙两车两次并排行驶的位置之间沿公路方向的距离为 |
如图,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直平面(纸面)内,且相对于过 轨迹最低点 的坚直线对称。忽略空气阻力。由此可知( )
A. |
Q 点的电势比 点高 |
B. |
油滴在 点的动能比它在 点的大 |
C. |
油滴在 点的电势能比它在 点的大 |
D. |
油滴在 点的加速度大小比它在 点的小 |
如图,一光滑的轻滑轮用细绳 悬挂于 点;另一细绳跨过滑轮,其一端悬挂物块 ,另一端系一位于水平粗糙桌面上的物块 。外力 向右上方拉 , 整个系统处于静止状态。若 方向不变,大小在一定范围内变化,物块 仍始终保持静止, 则( )
A. |
绳 的张力也在一定范围内变化 |
B. |
物块 所受到的支持力也在一定范围内变化 |
C. |
连接 和 的绳的张力也在一定范围内变化 |
D. |
物块 与桌面间的摩擦力也在一定范围内变化 |
一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则 ( )
A. |
质点速度的方向总是与该恒力的方向相同 |
B. |
质点速度的方向不可能总是与该恒力的方向垂直. |
C. |
质点加速度的方向总是与该恒力的方向相同 |
D. |
质点单位时间内速率的变化量总是不变 |
利用三颗位置适当的地球同步卫星, 可使地球赤道上任意两点之间保持无线电通讯,目前地球同步卫星的轨道半径为地球半径的 倍,假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )
A. |
1h |
B. |
4h |
C. |
8h |
D. |
16h |
一含有理想变压器的电路如图所示, 图中电阻 和 的阻值分别为 ,A为理想交流电流表, 为正弦交流电压源,输出电压的有效值恒定。当开关 断开时,电流表的示数为 ; 当 闭合时, 电流表的示数为 。该变压器原、副线圈匝数比为( )
A. |
2 |
B. |
4 |
C. |
5 |
现代质谱仪可用来分析比质子重很多的离子,其示意图如图所示, 其中加速电压恒定。质子在入口处从静止开始被加速电场加速, 经匀强磁场偏转后从出口离开磁场。若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。此离子和质子的质量比约为( )
A. |
11 |
B. |
12 |
C. |
121 |
D. |
144 |
一平行电容器两极板之间充满云母介质, 接在恒压直流电源上, 若将云母介质移出, 则电容器 ( )
A. |
极板上的电荷量变大,极板间的电场强度变大 |
B. |
极板上的电荷量变小, 极板间的电场强度变大 |
C. |
极板上的电荷量变大,极板间的电场强度不变 |
D. |
极板上的电荷量变小,极板间的电场强度不变 |
图中实线为一列简谐横波在某一时刻的波形曲线,经过 后,其波形曲线如图中虚线所示。已知该波的周期 大于 。若波是沿 轴正方向传播的,则该波的速度大小为 ,周期为 ;若波是沿 轴负方向传播的,该波的周期为 。
如图,一定量的理想气体从状态 经热力学过程 、 、 后又回到状态 。对于 、 、 三个过程,下列说法正确的是( )(填正确答案标号)
A. |
过程中,气体始终吸热 |
B. |
过程中,气体始终放热 |
C. |
过程中,气体对外界做功 |
D. |
过程中,气体的温度先降低后升高 |
E. |
过程中,气体的温度先升高后降低 |
如图,一倾角为α的光滑固定斜面的顶端放有质量 的 形导体框,导体框的电阻忽略不计;一电阻 的金属棒 的两端置于导体框上,与导体框构成矩形回路 ; 与斜面底边平行,长度 。初始时 与 相距 ,金属棒与导体框同时由静止开始下滑,金属棒下滑距离 后进入一方向垂直于斜面的匀强磁场区域,磁场边界(图中虚线)与斜面底边平行;金属棒在磁场中做匀速运动,直至离开磁场区域。当金属棒离开磁场的瞬间,导体框的 边正好进入磁场,并在匀速运动一段距离后开始加速。已知金属棒与导体框之间始终接触良好,磁场的磁感应强度大小 ,重力加速度大小取 , 。求
(1)金属棒在磁场中运动时所受安培力的大小;
(2)金属棒的质量以及金属棒与导体框之间的动摩擦因数;
(3)导体框匀速运动的距离。
一篮球质量为 ,一运动员使其从距地面高度为 处由静止自由落下,反弹高度为 。若使篮球从距地面 的高度由静止下落,并在开始下落的同时向下拍球,球落地后反弹的高度也为 。假设运动员拍球时对球的作用力为恒力,作用时间为 ;该篮球每次与地面碰撞前后的动能的比值不变。重力加速度大小取 ,不计空气阻力。求:
(1)运动员拍球过程中对篮球所做的功;
(2)运动员拍球时对篮球的作用力的大小。
一实验小组利用图(a)所示的电路测量一电池的电动势E(约 )和内阻 (小于 )。图中电压表量程为 ,内阻 ;定值电阻 ;电阻箱 ,最大阻值为 ; 为开关。按电路图连接电路。完成下列填空:
(1)为保护电压表,闭合开关前,电阻箱接入电路的电阻值可以选 (填" "或" ");
(2)闭合开关,多次调节电阻箱,记录下阻值 和电压表的相应读数 ;
(3)根据图(a)所示电路,用 、 、 、 和 表示 ,得 ;
(4)利用测量数据,做 图线,如图(b)所示;
(5)通过图(b)可得 (保留2位小数), (保留1位小数);
(6)若将图(a)中的电压表当成理想电表,得到的电源电动势为E',由此产生的误差为 %。