为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如下表:
新能源汽车补贴标准 |
|||
车辆类型 |
续驶里程(公里) |
||
纯电动乘用车 |
万元/辆 |
万元/辆 |
万元/辆 |
某校研究性学习小组,从汽车市场上随机选取了辆纯电动乘用车,根据其续驶里程(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
分组 |
频数 |
频率 |
合计 |
(1)求,,,的值;
(2)若从这辆纯电动乘用车中任选辆,求选到的辆车续驶里程都不低于公里的概率;
(3)若以频率作为概率,设为购买一辆纯电动乘用车获得的补贴,求的分布列和数学期望.
已知离散型随机变量的分布列为
X |
|||
P |
则的数学期望 ( )
A. B. C. D.
随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高176cm的同学被抽中的概率.
一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4.从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).
(1)求取出的4张卡片中, 含有编号为3的卡片的概率.
(2)再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.
某种食品是经过、、三道工序加工而成的,、、工序的产品合格率分别为、、.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场.
(1)正式生产前先试生产袋食品,求这2袋食品都为废品的概率;
(2)设为加工工序中产品合格的次数,求的分布列和数学期望.
将一枚硬币抛掷6次,求正面次数与反面次数之差ξ的概率分布列,并求出ξ的期望Eξ.
袋中有5只红球,3只黑球,现从袋中随机取出4只球,设取到一只红球得2分,取到一只黑球得1分,则得分ξ的数学期望Eξ=________.
设非零常数d是等差数列x1,x2,x3,…,x19的公差,随机变量ξ等可能地取值x1,x2,x3,…,x19,则方差V(ξ)=________.
甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ和η,且ξ、η分布列为
ξ |
1 |
2 |
3 |
P |
a |
0.1 |
0.6 |
η |
1 |
2 |
3 |
P |
0.3 |
b |
0.3 |
(1)求a、b的值;
(2)计算ξ、η的期望和方差,并以此分析甲、乙的技术状况.
一高考考生咨询中心有A、B、C三条咨询热线.已知某一时刻热线A、B占线的概率均为0.5,热线C占线的概率为0.4,各热线是否占线相互之间没有影响,假设该时刻有ξ条热线占线,则随机变量ξ的期望为________.
随机变量X的分布列如下:
X |
-1 |
0 |
1 |
P |
a |
b |
c |
其中a,b,c成等差数列,若E(X)=,则方差V(X)的值是________.
从5男和3女8位志愿者中任选3人参加冬奥会火炬接力活动,若随机变量ξ表示所选3人中女志愿者的人数,则ξ的数学期望是 .
A高校自主招生设置了先后三道程序:部分高校联合考试、本校专业考试、本校面试.在每道程序中,设置三个成绩等级:优、良、中.若考生在某道程序中获得“中”,则该考生在本道程序中不通过,且不能进入下面的程序.考生只有全部通过三道程序,自主招生考试才算通过.某中学学生甲参加A高校自主招生考试,已知该生在每道程序中通过的概率均为,每道程序中得优、良、中的概率分别为p1、、p2.
(1)求学生甲不能通过A高校自主招生考试的概率;
(2)设X为学生甲在三道程序中获优的次数,求X的概率分布及数学期望.
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(1)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:
品种甲 |
403 |
397 |
390 |
404 |
388 |
400 |
412 |
406 |
品种乙 |
419 |
403 |
412 |
418 |
408 |
423 |
400 |
413 |
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?