为考察某种药物预防禽流感的效果,进行动物家禽试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本.
(1)根据所给样本数据完成下面2×2列联表;
(2)请问能有多大把握认为药物有效?
|
不得禽流感 |
得禽流感 |
总计 |
服药 |
|
|
|
不服药 |
|
|
|
总计 |
|
|
|
某班主任对全班50名学生进行了作业量多少的调查,数据如下表:
|
认为作业多 |
认为作业不多 |
总数 |
喜欢玩电脑游戏 |
18 |
9 |
27 |
不喜欢玩电脑游戏 |
8 |
15 |
23 |
总数 |
26 |
24 |
50 |
根据表中数据得到5.059,因为p(K≥5.024)=0.025,
则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( )
(A)97.5% (B) 95% (C)90% (D)无充分根据
为了解某班关注NBA(美国职业篮球)是否与性别有关,对某班48人进行了问卷调查得到如下的列联表:
|
关注NBA |
不关注NBA |
合计 |
男生 |
|
6 |
|
女生 |
10 |
|
|
合计 |
|
|
48 |
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为.
(1)请将上面的表补充完整(不用写计算过程),并判断是否有95%的把握认为关注NBA与性别有关?说明你的理由;
(2)设甲,乙是不关注NBA的6名男生中的两人,丙,丁,戊是关注NBA的10名女生中的3人,从这5人中选取2人进行调查,求:甲,乙至少有一人被选中的概率.
答题参考
P(K2≥k) |
0.10 |
0.05 |
0.010 |
0.005 |
k0 |
2.706 |
3.841 |
6.635 |
7.879 |
设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,
(1)求同一工作日至少3人需使用设备的概率;
(2)实验室计划购买台设备供甲、乙、丙、丁使用,若要求"同一工作日需使用设备的人数大于的概率小于0.1,求的最小值.
一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为,求的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.
乒乓球台面被球网分成甲、乙两部分,如图,
甲上有两个不相交的区域,乙被划分为两个不相交的区域.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在上记3分,在上记1分,其它情况记0分.对落点在上的来球,队员小明回球的落点在上的概率为,在上的概率为;对落点在上的来球,小明回球的落点在上的概率为,在上的概率为.假设共有两次来球且落在上各一次,小明的两次回球互不影响.求:
(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率;
(Ⅱ)两次回球结束后,小明得分之和的分布列与数学期望.
随机观测生产某种零件的某工厂名工人的日加工零件数(单位:件),获得数据如下:、、、、、、、、、、、、、、、、、、、、、、、、,根据上述数据得到样本的频率分布表如下:
分组 |
频数 |
频率 |
(1)确定样本频率分布表中的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取人,至少有人的日加工零件数落在区间的概率.
设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为各人是否需使用设备相互独立.
(1)求同一工作日至少3人需使用设备的概率;
(2)表示同一工作日需使用设备的人数,求的数学期望.
某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.
甲 |
|
乙 |
6 |
9 |
3 6 7 9 9 |
9 5 1 0 |
8 |
0 1 5 6 |
9 9 4 4 2 |
7 |
3 4 5 8 8 8 |
8 8 5 1 1 0 |
6 |
0 7 7 |
4 3 3 2 |
5 |
2 5 |
(1)在乙班样本中的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
|
甲班(A方式) |
乙班(B方式) |
总计 |
成绩优秀 |
|
|
|
成绩不优秀 |
|
|
|
总计 |
|
|
|
附:,其中n=a+b+c+d.)
P(K2≥k) |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.01 |
0.005 |
0.001 |
k |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )
①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误
A.① | B.①③ | C.③ | D.② |
老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:
(1)抽到他能背诵的课文的数量的分布列;
(2)他能及格的概率.
如图,从A1(1,0,0)、A2(2,0,0)、B1(0,1,0)、B2(0,2,0)、C1(0,0,1)、C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).
(1)求V=0的概率;
(2)求V的分布列及数学期望E(V).
设50件商品中有15件一等品,其余为二等品.现从中随机选购2件,则所购2件商品中恰有一件一等品的概率为________.
某校150名教职工中,有老年人20个,中年人50个,青年人80个,从中抽取20个作为样本.
①采用随机抽样法:抽签取出30个样本;
②采用系统抽样法:将教工编号为00,01,…,149,然后平均分组抽取30个样本;
③采用分层抽样法:从老年人,中年人,青年人中抽取30个样本.
下列说法中正确的是( )
A.无论采用哪种方法,这150个教工中每一个被抽到的概率都相等 |
B.①②两种抽样方法,这150个教工中每一个被抽到的概率都相等;③并非如此 |
C.①③两种抽样方法,这150个教工中每一个被抽到的概率都相等;②并非如此 |
D.采用不同的抽样方法,这150个教工中每一个被抽到的概率是各不相同的 |