口袋里放有大小相等的两个红球和一个白球,有放回的每次摸出一个球,数列满足: 如果为数列的前项和,那么的概率为 ( )
A. | B. |
C. | D. |
甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛中甲以2:1的比分获胜的概率为( )
A.0.288 | B.0.144 | C.0.432 | D.0.648 |
假设每一架飞机的引擎在飞行中出现故障的概率为1-p,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2个引擎飞机要2个引擎全部正常运行,飞机才可成功飞行.要使4个引擎飞机更安全,则p的取值范围是
A. | B. | C. | D. |
一个盒子里装有相同大小的黑球10个,红球12个,白球4个.从中任取两个,其中白球的个数记为,则下列算式中等于的是( )
A. | B. | C. | D. |
在三次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为( )
A. | B. | C. | D. |
在四次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是( )
A. | B.[0,0.6] | C.(0,0. 4] | D.[0.6,1) |
抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是( )
A.两颗都是2点
B 一颗是3点,一颗是1点
C.两颗都是4点
D.一颗是3点,一颗是1点或两颗都是2点
下列是4个关于离散型随机变量ξ的期望和方差的描述
①Eξ与Dξ是一个数值,它们是ξ本身所固有的特征数,它们不具有随机性
②若离散型随机变量一切可能取值位于区间内,则a≤Eξ≤b
③离散型随机变量的期望反映了随机变量取值的平均水平,而方差反映的是随机变量取值的稳定与波动,集中与离散的程度
④离散型随机变量的期望值可以是任何实数,而方差的值一定是非负实数
以上4个描述正确的个数是( )
A.1 | B.2 | C.3 | D.4 |
一次测量中出现正误差和负误差的概率都是,则在5次测量中,恰好出现3次正误差的概率是
A. | B. | C. | D. |
某批产品的次品率为,现在从10件产品中任意的依次抽取3件,分别以放回和不放回的方式抽取,则恰有一件次品的概率分别为( )
A. | B. | C. | D. |
在4次独立试验中,事件A出现的概率相同,若事件A至少发生1次的概率是,则事件A 在一次试验中出现的概率是( )
12
A. | B. |
C. | D. |