如图所示,在半径为的圆形区域内有水平向里的匀强磁场,磁感应强度为B,E、F两点是水平直径的两个端点,圆形区域上侧有一水平放置的线性粒子源MN,其长度为R,圆心O刚好处在线性粒子源的垂直平分线上。已知线性粒子源MN可以连续以速率v0平行于纸面竖直向下发射质量为m、电荷量为q的带正电粒子,粒子重力不计。忽略粒子之间的相互作用,则下列说法中正确的是
A.粒子均沿半径方向射出磁场区域 |
B.粒子可能从E点射出磁场区域 |
C.粒子均从F点射出磁场区域 |
D.粒子在磁场中运动的时间不可能为 |
在平面直角坐标系中,的区域存在着电场强度大小均为E的匀强电场,的部分电场沿x轴正向,的区域电场沿x轴负向。的区域存在一个矩形的垂直纸面向外的匀强磁场,磁感应强度大小为B。一个电荷量为q的正电荷从靠近y轴的第一象限内M点沿y轴负方向以初速度开始运动,恰好从N点进入磁场。已知电荷质量为m且不计重力,OM=2ON。
(1)N点坐标;
(2)若粒子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;
(3)在(2)的前提下,该粒子由M点出发返回到无限靠近M点所需的时间。
如图所示,M、N为中心开有小孔的平行板电容器的两极板,相距为d,其右侧有一边长为2a的正三角形区域,区域内有垂直纸面向里的匀强磁场,在极板M、N之间加上电压U后,M板电势高于N板电势.现有一带正电的粒子,质量为m,电荷量为q,其重力和初速度均忽略不计,粒子从极板M的中央小孔s1处飘入电容器,穿过小孔s2后从距三角形A点a的P处垂直AB方向进入磁场,试求:
(1)粒子到达小孔s2时的速度和从小孔s1运动到s2所用的时间;
(2)若粒子从P点进入磁场后经时间t从AP间离开磁场,求粒子的运动半径和磁感应强度的大小;
(3)若粒子能从AC间离开磁场,磁感应强度应满足什么条件,此时所用最短时间为多少?
如图所示,空间存在一个半径为R0的圆形匀强磁场区域,磁场的方向垂直于纸面向里,磁感应强度的大小为B.有一个粒子源在纸面内沿各个方向以一定速率发射大量粒子,粒子的质量为m、电荷量为+q.将粒子源置于圆心,则所有粒子刚好都不离开磁场,不考虑粒子之间的相互作用.
(1)求带电粒子的速率.
(2)若粒子源可置于磁场中任意位置,且磁场的磁感应强度大小变为,求粒子在磁场中最长的运动时间t.
(3)若原磁场不变,再叠加另一个半径为R1(R1> R0)圆形匀强磁场,磁场的磁感应强度的大小为B/2,方向垂直于纸面向外,两磁场区域成同心圆,此时该离子源从圆心出发的粒子都能回到圆心,求R1的最小值和粒子运动的周期T.
如图所示,粒子源O产生初速度为零、电荷量为q、质量为m的正离子,被电压为的加速电场加速后通过直管,在到两极板等距离处垂直射入平行板间的偏转电场,两平行板间电压为2。离子偏转后通过极板MN上的小孔S离开电场。已知ABC是一个外边界为等腰三角形的匀强磁场区域,磁场方向垂直纸面向外,边界AB=AC=L,,离子经过一段匀速直线运动,垂直AB边从AB中点进入磁场。(忽略离子所受重力)
(1)若磁场的磁感应强度大小为,试求离子在磁场中做圆周运动的半径;
(2)若离子能从AC边穿出,试求磁场的磁感应强度大小的范围。
如图所示,在直角坐标系的二、三象限内有沿x轴正方向的匀强电场,电场强度大小为E;在一、四象限内以x=L的直线为理想边界的左右两侧存在垂直于纸面的匀强磁场B1和B2,y轴为磁场和电场的理想边界。在x轴上x=L的A点有一个质量为m、电荷量为q的带正电的粒子以速度v沿与x轴负方向成45o的夹角垂直于磁场方向射出。粒子到达y轴时速度方向与y轴刚好垂直。若带点粒子经历在电场和磁场中的运动后刚好能够返回A点(不计粒子的重力)。
(1)判断磁场B1、B2的方向;
(2)计算磁感应强度B1、B2的大小;
(3)求粒子从A点出发到第一次返回A点所用的时间。
如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直。一质量为m、电荷量为-q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场。已知OP=L,OQ=2L。不计重力。求:
(1)粒子从P点入射的速度v0的大小;
(2)匀强磁场的磁感应强度B的大小。
如图所示,直角三角形ABC区域中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,分别从AC边上的P、Q两点射出,则( )
A.从P射出的粒子速度大 |
B.从Q射出的粒子速度大 |
C.从P射出的粒子,在磁场中运动的时间长 |
D.两粒子在磁场中运动的时间一样长 |
如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场.A板带正电荷,B板带等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强度为B1.平行金属板右侧有一挡板M,中间有小孔O′,OO′是平行于两金属板的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁场感应强度为B2.CD为磁场B2边界上的一绝缘板,它与M板的夹角θ=45°,=a,现有大量质量均为m,含有各种不同电荷量、不同速度的带正负电粒子(不计重力),自O点沿OO′方向进入电磁场区域,其中有些粒子沿直线OO′方向运动,并进入匀强磁场B2中,求:
(1)进入匀强磁场B2的带电粒子的速度;
(2)能击中绝缘板CD的粒子中,所带电荷量的最大值;
(3)绝缘板CD上被带电粒子击中区域的长度.
如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,分别从AC边上的P、Q两点射出,则( )
A.从P射出的粒子速度大 |
B.从Q射出的粒子速度大 |
C.从P射出的粒子,在磁场中运动的时间长 |
D.从Q射出的粒子,在磁场中运动的时间长 |
如图所示的平面直角坐标系xOy,在第Ⅰ象限内有平行于y轴的匀强电场,方向沿y轴正方向;在第Ⅳ象限的正三角形abc区域内有匀强磁场,方向垂直于xOy平面向里,正三角形边长为L,且ab边与y轴平行。一质量为m、电荷量为q的粒子,从y轴上的P(O,h)点,以大小为v0的速度沿x轴正方向射入电场,通过电场后从x轴上的a(2h,O)点进入第Ⅳ象限,又经过磁场从y轴上的某点进入第Ⅲ象限,且速度与y轴负方向成45°角,不计粒子所受的重力。求:
(1)电场强度E的大小;
(2)粒子到达a点时速度的大小和方向;
(3)abc区域内磁场的磁感应强度B的最小值。
如图所示,M、N为中心开有小孔的平行板电容器的两极板,相距为D,其右侧有一边长为2a的正三角形区域,区域内有垂直纸面向里的匀强磁场,在极板M、N之间加上电压U后,M板电势高于N板电势.现有一带正电的粒子,质量为m,电荷量为q,其重力和初速度均忽略不计,粒子从极板M的中央小孔s1处射入电容器,穿过小孔s2后从距三角形A点a的P处垂直AB方向进入磁场,试求:
(1)粒子到达小孔s2时的速度和从小孔s1运动到s2所用的时间;
(2)若粒子从P点进入磁场后经时间t从AP间离开磁场,求粒子的运动半径和磁感应强度的大小;
(3)若粒子能从AC间离开磁场,磁感应强度应满足什么条件?
如图所示,在平面坐标系xOy内,第二三象限内存在沿y轴正方向的匀强电场,第一四象限内存在半径为L的圆形匀强磁场,磁场圆心在M(L,0)点,磁场方向垂直于坐标平面向外,一带正电的粒子从第三象限中的Q(-2L,-L)点以速度沿x轴正方向射出,恰好从坐标原点O进入磁场,从P(2L,0)点射出磁场,不计粒子重力,求:
(1)电场强度与磁感应强度大小之比。
(2)粒子在磁场与电场中运动时间之比。
如图,半径为 R的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外。一电荷量为q(q>0),质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为R/2。已知粒子射出磁场与射入磁场时运动方向间的夹角为600。,则粒子的速率为(不计重力 )( )
A. | B. | C. | D. |
如图所示,圆形区域内有垂直纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a、b、c,以不同的速率对准圆心O沿着AO方向射入磁场,其运动轨迹如图。若带电粒子只受磁场力的作用,则下列说法正确的是 ( )
A.a粒子动能最大 |
B.c粒子速率最大 |
C.c粒子在磁场中运动时间最长 |
D.它们做圆周运动的周期 |