综合运用
如图1,在平面直角坐标系中,正方形 OABC 的顶点 A 在 x 轴的正半轴上.如图2,将正方形 OABC 绕点 O 逆时针旋转,旋转角为 α(0°<α<45°) , AB 交直线 y=x 于点 E , BC 交 y 轴于点 F .
(1)当旋转角 ∠COF 为多少度时, OE=OF ;(直接写出结果,不要求写解答过程)
(2)若点 A(4,3) ,求 FC 的长;
(3)如图3,对角线 AC 交 y 轴于点 M ,交直线 y=x 于点 N ,连接 FN .将 △OFN 与 △OCF 的面积分别记为 S 1 与 S 2 .设 S= S 1 ﹣ S 2 , AN=n ,求 S 关于 n 的函数表达式.
近年来,“在初中数学教学中使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了若干名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和统计图: 根据以上图表信息,解答下列问题:(1)统计表中的m= ;(2)统计图中表示“影响不大”的扇形的圆心角度数为 度;(3)从这次接受调查的学生中随机调查一人,恰好是持“影响很大”看法的概率是多少?
解分式方程:.
化简:.
如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒.(1)在运动过程中,求P,Q两点间距离的最大值;(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此时的t值;若不存在,请说明理由(≈2.24,结果保留一位小数)
如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE(1)求证:△ABC∽△CBD;(2)求证:直线DE是⊙O的切线.