某市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过 10 T 的部分按 0 . 45 元 / T 收费;超过 10 T 而不超过 20 T 的部分按 0 . 8 元 / T 收费;超过 20 T 的部分按 1 . 5 元/T收费.某月甲户比乙户多缴水费 7 . 10 元,乙户比丙户多缴水费 3 . 75 元,问甲、乙、丙三户该月各缴水费多少元?(自来水按整数吨收费)
(本小题10分)已知A, B,C是⊙O上的三个点,四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D. (Ⅰ)如图①,求∠ADC的大小; (Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.
(本小题8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
图②
图①
(本小题8分)解不等式组 请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得__________________; (Ⅱ)解不等式②,得__________________; (Ⅲ)把不等式①和②的解集在数轴上表示出来: (Ⅳ)原不等式组的解集为__________________.
如图,在每个小正方形的边长为1的网格中,点A, B, C, D均在格点上,点E, F分别为线段BC,DB上的动点,且BE =DF. (Ⅰ)如图①,当BE =时,计算的值等于; (Ⅱ)当取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置是如何找到的(不要求证明).
问题探究: (一)新知学习: 圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上). (二)问题解决: 已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M. (1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长; (2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值; (3)若直径AB与CD相交成120°角. ①当点P运动到的中点P1时(如图二),求MN的长; ②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值. (4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.