如图①,在四边形 ABCD 中, AB = CD , E , F 分别是 BC , AD 的中点,连接 EF 并延长,分别与 BA , CD 的延长线交于点 M , N ,则 ∠ BME = ∠ CNE .
(温馨提示:在图①中,连接 BD ,取 BD 的中点 H ,连接 HE , HF ,根据三角形中位线定理,证明 HE = HF ,从而 ∠ 1 = ∠ 2 ,再利用平行线性质,可证 ∠ BME = ∠ CNE .)
(1)如图②,在四边形 ADBC 中, AB 与 CD 相交于点 O , AB = CD , E , F 分别是 BC , AD 的中点,连接 EF ,分别交 DC , AB 于点 M , N ,判断 △ OMN 的形状,并给予证明;
(2)如图③,在 △ ABC 中, AC > AB , D 点在 AC 上, AB = CD , E , F 分别是 BC , AD 的中点,连接 EF 并延长,与 BA 的延长线交于 G ,若 ∠ EFC = 60 ∘ ,连接 GD ,判断 △ AGD 的形状并证明.
(本题满分5分)写出二次函数y=-x2-4x-6的图象的顶点坐标和对称轴的位置,并求出它的最大值或最小值.
(本题满分5分)如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2, 求tan A和sin B的值.
(本题满分5分)解方程:(x+1)(x-2)=x+1.
若矩形的一个短边与长边的比值为,(黄金分割数),我们把这样的矩形叫做黄金矩形 (1)操作:请你在如图15所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD。 (2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由。 (3)归纳:通过上述操作及探究,请概括出具体有一般性的结论(不需证明)
已知,如图13,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC交于点E,EF⊥BD,垂足为F,我们可以证明+=成立,若将图13中的垂直改为斜交,如图14,AB∥CD,AB与BC交于点E,过点E作EF∥AB交BD于F,则 (1)+=还成立吗?如果成立,给出证明;如果不成立,请说明理由。 (2)请找出S△ABC,S△BED和S△BDC间的关系,并给出证明。