如图①,在四边形 ABCD 中, AB = CD , E , F 分别是 BC , AD 的中点,连接 EF 并延长,分别与 BA , CD 的延长线交于点 M , N ,则 ∠ BME = ∠ CNE .
(温馨提示:在图①中,连接 BD ,取 BD 的中点 H ,连接 HE , HF ,根据三角形中位线定理,证明 HE = HF ,从而 ∠ 1 = ∠ 2 ,再利用平行线性质,可证 ∠ BME = ∠ CNE .)
(1)如图②,在四边形 ADBC 中, AB 与 CD 相交于点 O , AB = CD , E , F 分别是 BC , AD 的中点,连接 EF ,分别交 DC , AB 于点 M , N ,判断 △ OMN 的形状,并给予证明;
(2)如图③,在 △ ABC 中, AC > AB , D 点在 AC 上, AB = CD , E , F 分别是 BC , AD 的中点,连接 EF 并延长,与 BA 的延长线交于 G ,若 ∠ EFC = 60 ∘ ,连接 GD ,判断 △ AGD 的形状并证明.
写出如图中“小鱼”上所标各点的坐标且回答:(1)点B、E的位置有什么特点?(2)从点B与点E,点C与点D的位置,看它们的坐标有什么特点?
如图,描出A(-3,-2)、B(2,-2)、C(3,1),在坐标平面内画出以这三个点为顶点的平行四边形,并写出第四个顶点的坐标。
如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标。
(本题14分)如图,已知正比例函数和反比例函数的图象都经过点.(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使的面积与的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由.
(本题12分)某商场购进一批单价为5元的日用商品.如果以单价7元销售,每天可售出160件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量每天就相应减少20件.设这种商品的销售单价为x元,商品每天销售这种商品所获得的利润为y元.(1)给定x的一些值,请计算y的一些值.
(2)求y与x之间的函数关系式,并探索:当商品的销售单价定为多少元时,该商店销售这种商品获得的利润最大?这时每天销售的商品是多少件?