口袋中有 4 个相同的小球,它们分别写有数字 2 , 3 , 4 , 5 ,从口袋中随机取出两个球,用所得的两个数 a 和 b 构成函数 y = ax - 2 和 y = x + b ,求使这两个函数的交点在直线 x = 2 右侧的概率.
如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC中点,点E为边AB上一动点,点F为射线BC上一动点,且∠FDE=90°. (1)当DF∥AB时,连接EF,求∠DEF的余切值; (2)当点F在线段BC上时,设AE=x,BF=y,求y关于x的函数关系式,并写出x的取值范围; (3)连接CE,若△CDE为等腰三角形,求BF的长.
在△ABC中,∠BAC=90°,延长BA到D,使AD=AB,点E、F分别为边BC、AC的中点. (1)求证:DF=BE; (2)若CF=2,CE=.求tan∠ADF.
计算:.
(1)计算:.(2)解方程=0.