某学校为满足学生多样化学习需求,准备组建美术、劳动、科普、阅读四类社团.学校为了解学生的参与度,随机抽取了部分学生进行调查,将调查结果绘制成如图所示的不完整的统计图.请根据图中的信息,解答下列问题:
(1)求本次调查的学生人数,并补全条形统计图;
(2)若全校共有学生 3600 人,求愿意参加劳动类社团的学生人数;
(3)甲、乙两名同学决定在阅读、美术、劳动社团中选择参加一种社团,请用树状图或列表法表示出所有等可能结果,并求出恰好选中同一社团的概率.
(宜宾)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(,),AB=1,AD=2. (1)直接写出B、C、D三点的坐标; (2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数()的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.
(遂宁)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点. (1)求反比例函数的解析式; (2)求一次函数的解析式; (3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
(自贡)在△ABC中,AB=AC=5,cos∠ABC=,将△ABC绕点C顺时针旋转,得到△A1B1C. (1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积; (2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.
(南充)如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处. (1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由) (2)如果AM=1,sin∠DMF=,求AB的长.
(南充)如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q. (1)求证:△APP′是等腰直角三角形; (2)求∠BPQ的大小; (3)求CQ的长.