设 a n 是首项为 a 1 ,公差为 d 的等差数列, {b n } 是首项 b 1 ,公比为q的等比数列
(1) 设 a 1 =0 , b 1 =1,q=2 , 若 | a n -b n | ≤ b 1 对n=1,2,3,4均成立,求d的取值范围
(2) 若 a 1 =b 1 > 0 , m ∈ N * , q ∈ ( 1 , 2 m ] 证明:存在 d ∈ R ,使得 | a n -b n | ≤ b 1 对n=2,3,…, m+ 1 均成立,并求 d 的取值范围(用 b 1 , m , q 表示)。
已知
用函数单调性证明上是单调减函数
某地有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同。甲家每张球台每小时5元;乙家按月计费,一个月30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元。小张准备下个月从这两家中的一家租一张球台使用,其活动时间不少于15小时,也不超过40小时。 (1)设在甲家租一张球台开展活动小时的收费为元,在乙家租一张球台开展活动小时的收费为元。试求和; (2)你认为选择哪一家比较合算?为什么?
已知函数. (1)求函数的定义域和值域: (2)指出函数的单调区间
求的值域