甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是 1 2 , 且面试是否合格互不影响.
求: ( I ) 至少有 1 人面试合格的概率;
( II ) 签约人数 ξ 的分布列和数学期望.
下表数据是水温度x(℃)对黄酮延长性y(%)效应的试验结果,y是以延长度计算的,且对于给定的x,y为变量.
(1)求y关于x的回归方程;(2)估计水温度是1 000 ℃时,黄酮延长性的情况.(可能用到的公式:,,其中、是对回归直线方程中系数、按最小二乘法求得的估计值)
为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校学生身高在170~185 cm之间的概率;(2)从样本中身高在180~190 cm之间的男生中任选2人,求至少有1人身高在185~190 cm之间的概率.
对于函数与常数a,b,若恒成立,则称(a,b)为函数的一个“P数对”:设函数的定义域为,且f(1)=3.(1)若(a,b)是的一个“P数对”,且,,求常数a,b的值;(2)若(1,1)是的一个“P数对”,求;(3)若()是的一个“P数对”,且当时,,求k的值及茌区间上的最大值与最小值.
已知数列{}的前n项和为,且满足.(1)证明:数列为等比数列,并求数列{}的通项公式;(2)数列{}满足,其前n项和为,试求满足的最小正整数n.
设函数图像上的一个最高点为A,其相邻的一个最低点为B,且|AB|=.(1)求的值;(2)设△ABC的内角A、B、C的对边分别为a、b、c,且b+c=2,,求的值域.